

A modeling environment for the simulation of cellular events. Download at <u>vcell.org</u> Version 7.7 July 2025

Defining Model Physiology

Virtual Cell is developed by the Center for Cell Analysis and Modeling at the University of Connecticut Health Center. It is funded by the National Institute of General Medical Sciences (NIGMS)

VCell is funded by the NIGMS

Defining Model Physiology

Objective:

Create a single Biomodel of Ran nuclear transport using Virtual Cell modeling and analysis software.

Goals:

- → Understand the basic functions of VCell software as it pertains to this tutorial.
- → Create a Biomodel Physiology with species, reactions, and fluxes.

General familiarity with VCell software is recommended. Although this tutorial can be followed by a VCell novice, it is recommended that novice users first look through the VCell tutorials available at http://vcell.org/support

Model building can be matched to the BioModel **Tutorial_MultiApp** in the **<u>Tutorial folder</u>** in the **VCell Database**.

How to Save Your Model

• To save your model, go to the top left corner and click: \circ File \rightarrow Save

• If your model cannot be saved, check your errors in the bottom panel titled "Problems." Clicking on an error will lead you to the part of the model that may not let you save.

• If you can't save your model because of errors, you can save as local in the VCML format and reload into VCell later.

Table of Contents

Click on a section title to go to that section.

1.	Creating Compartments	Slide 5
2.	Defining a Species	Slide 12
3.	Making a Reaction Across a Membrane	Slide 14
4.	Creating a Reaction in a Compartment	Slide 18
5.	Defining Reaction Kinetics	Slide 23

EC	PM	Cyt	NM	Nuc

Creating Compartments

This model requires 3 compartments separated by 2 membranes. Continue creating two additional compartments that are separated by a membrane.

TIP: add compartments and membranes in numerical order (e.g. c0, c1, c2).

To be consistent with the next tutorials and the MultiApp_Tutorial model, please rename the compartments and membranes to the following:

- CO -> EC (Extracellular)
- MO -> PM (Plasma Membrane)
- C1 -> Cyt (Cytosol)
- M1 -> NM (Nuclear Membrane)
- C2 -> Nuc (Nucleus)

Defining a Species

Chemical Species - A pool of chemically identical molecular entities that serve as variables in the model.

TIP: Always save your model as soon as possible; begin saving after adding your first species and structures.

Making a Reaction Across a Membrane

To create a product of a flux reaction, use the **reaction tool** to drag a line from the flux to a point inside the compartment where a product species will be made.

Creating a Reaction in a Compartment

04

To create a product species, use the **Reaction Tool** and drag from the reaction symbol to a point inside the compartment where your product species will be located. Once you release the mouse button, the product species will be created.

Continue adding components to your model and naming them until you have the following objects as described in the table below.

NOTE: you can't move species, reactions, or fluxes from one compartment to another. You must delete a species, flux, or reaction from one compartment and then create it in another compartment.

Name	Description	Location
RanC_nuc	Ran-Cargo Complex	Nucleus
	Flux Reaction Node	Nuclear Membrane
RanC_cyt	Ran-Cargo Complex	Cytoplasm
	Reaction Node	Cytoplasm
C-cyt	Cargo	Cytoplasm
Ran_cyt	Ran- GTPase	Cytoplasm

If you need to rename a component, select it, and on the **Object Properties** tab, use the component's name text field to supply the new name.

Electrical Properties Reversible 📝	V include molecular	flux	include electric current (into inside structur	e "undefined")
	Kinetic Type General Flux Density (µM-µm/s)			Convert to [molecules.s-1]
Name	Description	Global	Expression	Units
J	reaction rate		kfl+ (RanC_cyt - RanC_nuc)	µM.µm.s ⁻¹
I	inward current density		0.0	pA.µm ⁻²
netValence	net charge valence		1.0	1
kfl	user defined		0.0	µm.s-1
RanC_cyt	Species Concentration	1	Variable	Mц
RanC nuc	Species Concentration	V	Variable	μМ

Defining Reaction Kinetics

05

	Preaction Dagram Reaction Dagram	eactions 🗭 Structures 🧭 Species 🧭 Molecules 🐧		rical (Membrane Polarity)
	Nuc	Compartment		(
	EC	Compartment		
	Cyt	Compartment		
	PM	Membrane	unspecified compartmer	nt (+) unspecified compartment (-)
	NM	Membrane	unspecified compartmer	nt (+) unspecified compartment (-)
Observ	ables tabs to lo	uctures, Species, Molecules ok up specific details of the as opposed to the Reaction I	physiology	
is usefu	II when working	with large and complicated	models.	
•		s a model with you, click t to refresh your device's		

Acknowledgments

This tutorial was prepared by Sreekirthana Kolla (East Granby High School) and Justine Laureano (East Hartford High School) under the guidance of Dr. Michael L. Blinov, Associate Professor, Center for Cell Analysis and Modeling. The students were funded by the Department of Health Career Opportunity Programs; the Aetna Foundation; Connecticut State Legislative Fund; John and Valerie Rowe Health Professions Scholars Program; The Hartford; the University of Connecticut Foundation; the Friends of the Department of Health Career Opportunity Programs; and UConn Health.