

A modeling environment for the simulation of cellular events. Download at <u>vcell.org</u>

Version 7.7 Updated July 2025

Single Compartment Rule-Based Modeling

Virtual Cell is developed by the Center for Cell Analysis and Modeling at the University of Connecticut Health Center. It is funded by the National Institute of General Medical Sciences (NIGMS)

VCell is funded by the NIGMS

VCell is developed at CCAM

Center for Cell Analysis & Modeling

In this tutorial you will learn how to:

- Create a rule-based **Physiology** with Molecules, Species, Rules and Observables.
- Simulate a model using **Deterministic application** that expands rules into a reaction network using the **BioNetGen** engine.
- Simulate a model using a **Stochastic application** that simulates the reaction network generated by **BioNetGen**.
- Simulate a model using **Network-Free** application that skips network generation and directly computes Observables using **NFSim** engine.

General familiarity with VCell software is recommended. Although this tutorial can be followed by a VCell novice, it is recommended that novice users first look through the VCell tutorials available at <u>https://vcell.org/support</u>.

Model building can be matched to the BioModel *Rule-based_EGFR_tutorial* in the Tutorial folder in the VCell Database. It is advised to compare your model to the public one when following this tutorial.

Table of Contents

1. Introduction	Slide 4
2. <u>Creating Molecules</u>	Slide 6
3. Creating Structures and Observables	Slide 14
4. <u>Creating Species</u>	Slide 21
5. Defining Reaction Rules	Slide 25
6. Visualization of Rules and Networks	Slide 37
7. Finalizing Rules and Reactions	Slide 43
8. Creating Application: Deterministic (Network Generation)	Slide 48
9. Creating Application: Stochastic	Slide 60
10. Creating Application: Network-Free	Slide 64

Introduction

We will demonstrate how to create a rule-based model of EGFR receptor interaction with two adapter proteins Grb2 and Shc. A ligand reversibly binds to receptor-monomer at the extracellular domain, triggering dimerization through receptor transmembrane domains. The receptor kinase transphosphorylates two receptor phosphotyrosines that independently recruit two adapter proteins, Grb2 and Shc. Shc itself is subject to transhphosporylation.

Opening VCell for the First Time

🚏 Virtual C	ell login	
User Name Password		
L	.ogin Cancel	
	Forgot Login Password	L
	New User Registration	
acknow publicat publishe	Link for details on how to ledge Virtual Cell in your ion and how to share your ed research through the atabase.	

You need to register as a new user if you want to run simulations on VCell, compute resources, or use the VCell database to view and store models that can be shared with collaborators.

TIP: If something goes wrong, press ESC on the keyboard.

TIP: A Molecule name can always be changed by double clicking in Name field, editing, and pressing **ENTER**. It does not matter if the molecule is already used elsewhere – the change will be propagated everywhere in the model.

TIP: Sites can always be moved right and left among the Molecule length and renamed, states can always be renamed. To delete a state, you must first eliminate all places where this site is used, e.g. in reaction rules that change the site.

File Server Window Tools Help			
BioModel1	🐕 Reaction Diagram 💿 Reactions 💿 Structures 💿	Species 🗭 Mol	ecules 💿 Observables
Physiology	Name	Depiction	BioNetGen Definition
 Presention Diagram Reactions (0) 	EGF	Q	EGF(Site)
Structures (1)	EGFR	CO0000	EGFR(ecd,tmd,Y1~u~p,Y2~u~p)
- D Species (0)			
Molecules (2)			
Observables (2) Applications (0)			
Parameters, Functions and Units			
🗄 Pathway			
			1. Right click on the site to call up a menu.
VCell DB BMDB Pathway Comm Sabio BioModels MathModels Geometries Search Biological Models My BioModels (2018nathans751) (16) Shared BioModels (0)	New Molecule Delete Pathway Links Object Properties Problems (0 Errors, 0 Warnings)		2. Select Rename , and change states "state1" and "state0", to "p" (phosphorylated) and "u" (unphosphorylated) respectively. Press Enter to save. Do this for both sites "Y1" and "Y2".
Public BioModels (601) Tutorials (8) Education (34)	Anchor Molecule No restrictions Only these: CO Annotation	1 mil	ename elete

TIP: Molecule colors are ordered and cannot be changed. Molecules can be added and/or deleted at any time, but reaction rules, species and observables that use these molecules must be deleted first. A warning will appear if deletion is not allowed.

TIP: BioNetGen definition displays the test strings that encodes elements of a rule-based model in the BioNetGen language (BNGL). In BNGL, molecular states are listed after site name with ~ appended.

TIP: Save your model as often as you can, so you don't lose any changes!

TIP: Compartments can be volumetric (3D) and membranes (2D). They can be added any time, but all species defined before compartments are introduced will be located in volume and cannot be moved to membranes.

Rule-Based Tutorial VCell 6.1: Observables

TIP: Each Observable corresponds to a sum of species selected by species patterns. Specific species are identified the network is generated using reaction rules. An observable corresponding to the total amount of all species that include this molecule is automatically generated for every molecule.

File Server <u>W</u> indow Tools Help											
💾 BioModel1	🐉 Reaction Diagram (C Reactions	🗇 Structures 🗇 Spe	cies 💭 Molecules	🗇 Observables						
Physiology	Name			Depiction	BioNetGen Definition	Count					
🐕 Reaction Diagram 	O0_EGF_tot	Cell		Septement	EGF()	Molecules					
- Structures (1)	00_EGFR_tot	Cell	Sector 1	100 M	EGFR()	Molecules					
Species (0)	O0 Grb2 tot	Cell	9		Grb2()	Molecules					
📁 Molecules (4)	00_Shc_tot	Cell			Shc()	Molecules					
Observables (4)											
 Applications (0) Parameters, Functions and Units 	1. Right click on Observables tab. You'll see a set										
Parameters, runctions and units Pathway	of observables corresponding to the total number										
					s of each type.						
			2 This obser	vable selects	species that have FGF	R molecules in					
	2. This observable selects species that have EGFR molecules in any state and any complex. Question marks and grey color										
				• •		• ·					
VCell DB BMDB Pathway Comm Sablo					whether sites are boun	d or unbound					
BioModels MathModels Geometries		are not important for counting.									
E Search	New Observable Duplicate Delete Pathway Links - Search										
Biological Models											
My BioModels (2018nathans751) (16) Grad Shared BioModels (0)	Object Properties Problems (0 Errors, 0 Warnings) 💿 Database File Info										
🕀 🧰 Public BioModels (601)	Add Pattern										
Tutorials (8)	Add Pattern	EGFR	?								
🗄 🛄 Education (34)	Multimolecular	cell 2	tmd Y1	Y2							
	Polymer of		.1 .1								
	Clength = 2 The default setting will count "Molecules", meaning that a species is										
	length > 1	counted a	s many times	as it has this	Molecule. This means	that dimers of					
EGFR are counted twice, and tetramers (if any) are counted four tir											
	Annotation										

Rule-Based Tutorial VCell 6.1: Observables

TIP: Every table has a column BioNetGen definition. It can be edited *only once* –the first time an object is specified. It is useful if you have separate BNGL code you want to paste, but do not want to import for some reason. If you paste in BNGL code, once you click enter it cannot be further edited unless you export back out as BNGL.

TIP: A yellow warning sign or red error sign may appear temporarily if something is wrong. After the error/warning is corrected, the sign will disappear within a few seconds.

Rule-Based Tutorial VCell 6.1: Observables

TIP: If you rename a Molecule, the Observable corresponding to its total will be renamed automatically as long as you do not change its name. For example, changing **_tot** to **_total** will decouple the Observable from the Molecule definition, and it will be no longer renamed automatically if you change the name of this molecule.

File Server Window Tools Help BioModel1 🤣 Reaction Diagram 🔘 Reactions 💭 Structures 🔘 Species 💭 Molecules Observables Physiology Name Structure Depiction **BioNetGen Definition** Count Reaction Diagram 9 Reactions (0) O0_EGF_tot Cell EGF() Molecules 0000 Structures (1) O0_EGFR_tot Cell EGFR() Molecules Species (0) 9 O0_Grb2_tot Cell Grb2() Molecules D Molecules (4) 000 O0 Shc tot Cell Shc() Molecules Observables (7) Cell 0000 EGFR(tmd!+) Molecules Dimers Applications (0) EGFR(tmd!+) 0000 Dimers_s Cell Species Parameters, Functions and Units 00099 Molecules + Pathway To specify an Observable counting all phosphorylated sites "Y1", right click on the white state shape and select the desired state "p". ** VCell DB BMDB Pathway Comm Sabio BioModels MathModels Geometries + Search New Observable Duplicate Delete Pathway Links -Search Biological Models H My BioModels (2018nathans751) (16) **Object Properties** Problems (0 Errors, 0 Warnings) Database File Info Shared BioModels (0) Public BioModels (601) Add Pattern Tutorials (8) EGFR Education (34) State: not specified, ~ ecd tmd Y1 Y2 Multimolecular Cell State: u ~ Polymer of State: p ~ 2 Iength = Iength > 1 Annotation

Rule-Based Tutorial VCell 6.1: Observables

TIP: Species corresponding to each Observable can be seen after network generation under Application > Simulations > Generated Math > Math Description Language.

Rule Based1	Reaction Diagram	Reactions 👩 Structures 👩 S	Species Molecules 👩 Obs	ervables		
Physiology		Constant and Const				
🗝 🐓 Reaction Diagram	Name	Structure	Depiction	Notes	BioNetGen Definition	Count
Reactions (11)	O0_EGF_tot	Cell			EGF()	Molecules
💯 Structures (1)	O0_EGFR_tot	Cell	CO0330		EGFR()	Molecules
Species (6)	O0_Grb2_tot	Cell	9		Grb2()	Molecules
Molecules (4)	O0_ShC_tot	Cell	600		shC()	Molecules
🗭 Observables (9)	Dimers	Cell	COOSS		EGFR(tmd!+)	Molecules
Applications (3)	Dimers_s	Cell	COOCO		EGFR(tmd!+)	Species
Application0	Y1	Cell	CO090		EGFR(Y1~p!?)	Molecules
Geometry	Y2	Cell	00000	1	EGFR(Y2~p!?)	Molecules
Specifications	Y_total	Cell	COOSC COOSC		EGFR(Y1~p!?) EGFR(Y2~p!?)	Molecules
Copy of Application0 1 Copy	A V	uplicate Delete Pa ons Breblems (0 Errors, 1 Warn EGFR ecd tmd Cell ?	need to b "Y1", ther pattern b state.	e specifie n click Ad	es "Y1" and "Y2", ed. First specify a d Pattern, and sp te "Y2" in the pho	pattern for ecify a similar
⊞- <u>ि</u> Uncurated (742)	Polymer of length = 2 length > 1 Polymer of length > 1	EGFR ecd tmd				

Rule-Based Tutorial VCell 6.1: Species

TIP: Species may consist of more than one molecule, but the molecules must be connected.

Rule-Based Tutorial VCell 6.1: Species

TIP: Left click on the Problems tab will show the list of errors and warnings. **Double left click** on a problem will bring up the issue.

Rule-Based Tutorial VCell 6.1: Species

TIP: Left click on a Table column name (e.g. Name) will sort the table by this column.

File Server Window Tools Help			1		
BioModel1	🐓 Reaction Diagram 🔘 Re	eactions 🗇 Structures	Species 🗇 Molecules 🖉	Observables	
Physiology Reaction Diagram	Name	Structure	Depiction	Link	BioNetGen Definition
Reaction Diagram	R	Cell	00000		EGFR(ecd,tmd,Y1~u,Y2~u)
Structures (1)	L	Cell			EGF(Site)
Dispecies (5)	Grb2	Cell			Grb2(sh2)
- Ø Molecules (4)	ShcP	Cell	~~		Shc(sh3,Y~p)
💭 Observables (9)	ShcU	Cell	~~		Shc(sh3,Y~u)
Applications (0)	(add new here)				
Parameters, Functions and Units				1	
VCell DB BMDB Pathway Comm Sabio			6.1 (Rule-based)	tolder.	
BioModels MathModels Geometries	New Species Duplica		hway Links 🕶	Search	
Shared BioModels (0) Public BioModels (601) Cutorials (8) Education (34)	Object Properties Problem: Select only one object (e.g.	s (0 Errors, 0 Warnings)			

Rule-Based Tutorial VCell 6.1: Reaction Rule for bimolecular interaction: Editor

TIP: Reaction rules generate reactions by selecting species that serve as reactants and generating new species i.e. the products of these reactions. Thus, each reaction rule is defined with reactant patterns (that select species to be reactants) and products patterns (to define how reactant molecules are modified).

TIP: Always check errors and warnings until you understand the issue. If in trouble, use Help from the top menu. It is fully searchable. It can be printed from <u>http://vcell.org/support</u>

TIP: The search field can be used to filter all lists by an entered term, such as Molecule or site name.

TIP: Molecules in reactant/product patterns can be rearranged by **right click** on the Molecule shape and choosing **Move right/Move left** actions.

Rule-Based Tutorial VCell 6.1: Reaction Rule for bimolecular interaction: Editor

TIP: Note that some options for binding status are greyed out because they are impossible. For example, if tmd site of EGFR is unbound in a reactant pattern, the only possibility in the product pattern is to keep it unbound or bind to another site.

Rule-Based Tutorial VCell 6.1: Reaction Rule for bimolecular interaction: Kinetics

TIP: The numbers of specified Molecules, Species, Reactions and Observables are always displayed in the left panel.

Rule-Based Tutorial VCell 6.1: Units

TIP: The unit system must be changed before entering any numeric values. Otherwise, all values will be converted from the old units to a new unit system.

Rule-Based Tutorial VCell 6.1: <u>Kinetics for bimolecular interaction rules</u>

TIP: VCell has various kinetic types, but rule-based models in version 6.1 are limited to mass-action kinetic only.

File Server Window Tools Help											
BioModel1	🐓 Reaction Dia	gram 📁 Rea	actions 👩 g	Structures 🗇 Sp	ecies 💭 Mol	ecules 🗇 Ol	bservables				
Physiology Physiology Reaction Diagram	Reaction Name A Structure			Depicti	Depiction		Link		BioNetGen Defini	BioNetGen Definition	
Reactions (1)	Reaction Rul	e ligand_bind	Cell		<-> 00000	MassAction		@Cell:EGFR(ecd,tmd)+@C	ell:EGF(Site) <->	@Cell:EGFR(ec	
- D Structures (1)											
💭 Species (5) 💭 Molecules (4)											
Observables (9)											
Applications (0)											
Parameters, Functions and Units											
⊞-Pathway											
					III						
VCell DB BMDB Pathway Comm Sabio										P	
BioModels MathModels Geometries	New Reaction	New R	ule Dupl	icate Delet	e Pathwa	ay Links 🔻		Search			
Search Biological Models	Object Propertie	C Drahlana	10 Errora 0 W		tabaca Fila Infe						
Biological Models (2018nathans751) (16)	Object Properties Problems (0 Errors, 0 Warnings) 💿 Database File Info										
🕀 🧰 Shared BioModels (0)	Skinetics Editor										
⊕ 🛄 Public BioModels (601) ⊕ 🧰 Tutorials (8)	Reaction Name ligand_bind										
Education (34)	Reversible 🔽	Kinetic Type	Mass Action (for each reactio	n: Kf• Π reactants	s ~ Kr•∏ produ	cts)		▼ Co	onvert units	
	Name	Desc	ription	Global			E	xpression		Units	
			generated by	rule	Variable					nM.s ⁻¹	
		croscopic forw			0.003					s-1,nM-1	
	Kr mi	croscopic reve	erse rate		0.06					S ⁻¹	
	Set values in proper units. Match all values to the model in										
			ay Links	the T	the Tutorials folder.						
	Linked Pathway	Object(s):									
										÷	

TIP: If reactants or products contain identical molecules, they are automatically numbered for the modeler's convenience, so the user can match reactants to products.

TIP: A site with a vertical line underneath means that the site is bound, but the binding partner is not explicitly specified and can be any molecule allowable by rules.

TIP: Using the **Duplicate** button can save a lot of time when a combination of multiple molecules participates in multiple reaction rules. Make sure you edit the copied rule and not the original one!

Visualization of Rules and Networks

Rule-Based Tutorial VCell 6.1: Visualization of Reaction Rules for bimolecular interaction

Show Differe...

Rule-Based Tutorial VCell 6.1: Visualization of Reaction Rules for bimolecular interaction

Rule-Based Tutorial VCell 6.1: Reaction Diagram

Rule-Based Tutorial VCell 6.1: Reaction Diagram

Rule-Based Tutorial VCell 6.1: Reaction Diagram

Finalizing Rules and Reactions

Reaction 🔺	Name	Depiction
Reaction Rule	R_Grb2_interaction	$\bigcirc \bigcirc $
Reaction Rule	Y1_dephosph	COOGO -> COOGO
Reaction Rule	Shc_phosph	COCCO <- 0000 000
Reaction Rule	R_ShcP_interaction	-> 0009
Reaction Rule	R_ShcU_interaction	-> 0009
Reaction Rule	Y2_dephosph	-> COOGG
Reaction Rule	dimeriz	0000 + 0000 <-> 0000 0000
Reaction Rule	ligand_bind	$\bigcirc \bigcirc $
Reaction Rule	Y1_phosph	COOGO -> COOGO
Reaction Rule	Y2_phosph	COOGO -> COOGO
ShcP -> ShcU	ShcDephosp	<u>∽</u> -> <u>∽</u>

TIP. One can use VCell reaction tools to create non-rule based reactions among species (see other tutorials on VCell use).

TIP: Enter a string (e.g. Molecule or Site name) in the Search field, and the table will be filtered to display only entries containing this string. You can enter any BNGL string as well.

File Server Window Tools Help							
BioModel1	No Department	Peaction			Oheenvahles		
- Physiology			1	ures 💿 Species 💿 Molecules 🔇	Perfect and perfect on the second	1	
🐓 Reaction Diagram	Reaction	Name 🔻	Structure	Depiction	Kinetics	Link	
💯 Reactions (11)		R_Grb2_interaction	Cell		and the second		@Cell:EGFR(Y1~p)+@Cell:Grb2(sh2) <-> @C
🗊 Structures (1)	Reaction Rule	ligand_bind	Cell	COOGG9 + COO <-> COOGG9	MassAction		@Cell:EGFR(ecd,tmd)+@Cell:EGF(Site) <-> @
🗊 Species (5)	Reaction Rule	Y2_phosph	Cell	COOSO -> COOSO	MassAction		@Cell:EGFR(tmd!+,Y2~u) -> @Cell:EGFR(tmd
💯 Molecules (4)	Reaction Rule	Y2_dephosph	Cell		MassAction		@Cell:EGFR(Y2~p) -> @Cell:EGFR(Y2~u)
🖙 💯 Observables (9)	Reaction Rule	Y1_phosph	Cell	COOSE -> COOSE	MassAction		@Cell:EGFR(tmd!+,Y1~u) -> @Cell:EGFR(tmd
Applications (0)	Reaction Rule	Y1_dephosph	Cell	-> 	MassAction		@Cell:EGFR(tmd!+,Y1~p) -> @Cell:EGFR(tmd
Parameters, Functions and Units	Reaction Rule	Sch_phosph	Cell		MassAction		@Cell:EGFR(Y2~p!1).Shc(sh3!1,Y~u) -> @Ce
🕀 Pathway	ShcP -> ShcU	Sch_Dephosph	Cell	-> 	MassAction		ShcP -> ShcU
	Reaction Rule	R_SchU_interaction	Cell	-> 	MassAction		@Cell:EGFR(Y2~p)+@Cell:Shc(sh3,Y~u) <->
	Reaction Rule	R_SchP_interaction	Cell	-> -> 0000 + 000 -> 0000	MassAction		@Cell:EGFR(Y2~p)+@Cell:Shc(sh3,Y~p) <->
	Reaction Rule	Dimerization	Cell	-> -> 00000 + -> 00000	MassAction	0	@Cell:EGFR(ecd!+,tmd)+@Cell:EGFR(ecd!+,t
BioModels MathModels Geometries	New Reaction New Rule Duplicate Delete Pathway Links ▼ Search ▲▼						
Shared BioModels (0) Dublic BioModels (601)	Show Warnin	lgs					Refresh
Tutorials (10)	Des	cription 🔺		Url	Source		Defined In:
⊞- <u></u> Education (34)				tion rule as in the m o reversibility of rul			

Rule-Based Tutorial VCell 6.1: Review of Rules

Ligand_Bind (receptor must be in monomeric form (tmd is unbound) and not bound to ligand (ecd is unbound) for reaction to happen.)

R_ShcU_interaction (Receptor is not necessarily in monomeric form. Y on Shc must be unphosphorylated. Phosphorylated Y2 binds with sh3).

Dimeriz (tmd must be unbound and ecd has to be bonded externally for the two tmd sites to bond and form a dimer).

R_ShcP_interaction (for this reaction to occur, the Y site on Shc has to be unbound and phosphorylated. The unphosphorylated Y2 binds with sh3).

Reaction	Reversible?	Kf	Kr
ligand_bind	Yes	0.003 1/(nM s)	0.06 1/s
Dimeriz	Yes	0.001 1/(nM s)	0.1 1/s
R_Grb2_interaction	Yes	0.001 1/(nM s)	0.05 1/s
R_ShcP_interaction	Yes	4.5E-04 1/(nM s)	0.3 1/s
R_ShcU_interaction	Yes	0.045 1/(nM s)	0. 6 1/s

Rule-Based Tutorial VCell 6.1: <u>Review of Rules</u>

Sch_Phosph (The Y site on Shc changes from unphosphorylated to phosphorylated. In order for this to happen, sh3 must be bound to the phosphorylated Y2 site).

Y1_Dephosph (the Y1 site changes states from phosphorylated to unphosphorylated).

Y2_Dephosph (the Y1 site changes states from phosphorylated to unphosphorylated).

Sch_Dephosph (this is a reaction, not a reaction rule, meaning that it is a reaction that takes place between species instead of molecular patterns).

Reaction	Reversible?	Kf	Kr
Y1_phosph	No	0.5 1/s	0.0
Y1_dephosph	No	4.5 1/s	0.0
Y2_phosph	No	0.5 1/s	0.0
Y2_dephosph	No	4.5 1/s	0.0
Shc_phosph	No	3.0 1/s	0.0
ShcDephosp	No	0.005 1/s	0.0

08

Creating Application: Deterministic (Network Generation)

Name	e Structure Depiction		BioNetGen Definition				
R	c0		EGFR(Y1~u,Y2~u,ecd,tmd)				
L	c0	\bigcirc	EGF(Site)				
Grb2	c0		Grb2(sh2)				
ShcP	c0	609	Shc(Y~p,sh3)				
ShcU	c0		Shc(Y~u,sh3)				
s5	c0	~~~~~~~	EGF(Site!1).EGFR(Y1~u,Y2~u,ecd!1,tmd)				
s 6	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~u,ecd!1,tmd!				
s7	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~p,ecd!1,tmd!				
s8	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!1,tmd!				
s9	c0		EGF(Site!1).EGFR(Y1~u,Y2~p,ecd!1,tmd)				
s10	c0		EGF(Site!1).EGFR(Y1~p,Y2~u,ecd!1,tmd)				
s11	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~p,ecd!1,tmd!				
s12	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~p,ecd!1,tmd!				
s13	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!1,tmd!				
s14	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!1,tmd!				
s15	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~p!3,Y2~u,ecd!1,tm				
s16	c0		EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~p!3,ecd!1,tm				

Rule Structure	Depiction	BioNetGen Definition
ligand c0		EGFR(Y1~u,Y2~u,ecd,tmd) + EGF
ligand c0		EGF(Site) + EGFR(Y1~u,Y2~p,ecd
ligand c0	$\bigcirc + \bigcirc \bigcirc$	EGF(Site) + EGFR(Y1~p,Y2~u,ecd
ligand c0	$\bigcirc + \bigcirc \bigcirc$	EGF(Site) + EGFR(Y1~p,Y2~p,ecd
ligand c0		EGF(Site) + EGFR(Y1~p!1,Y2~u,ec
ligand c0		EGF(Site) + EGFR(Y1~u,Y2~p!1,ec
ligand c0		EGF(Site) + EGFR(Y1~u,Y2~p!1,ec
ligand c0		EGF(Site) + EGFR(Y1~p!1,Y2~p,ec
ligand c0		EGF(Site) + EGFR(Y1~p,Y2~p!1,ec
ligand c0		EGF(Site) + EGFR(Y1~p,Y2~p!1,ec
ligand c0		EGF(Site) + EGFR(Y1~p!1,Y2~p!2,
ligand c0		EGF(Site) + EGFR(Y1~p!1,Y2~p!2,
ligand c0	-> -> -> -> -> -> -> -> -> -> -> -> -> -	EGF(Site!1).EGFR(Y1~u,Y2~u,ecd!
ligand c0		EGF(Site!1).EGFR(Y1~u,Y2~p,ecd!
ligand c0		EGF(Site!1).EGFR(Y1~p,Y2~u,ecd!
ligand c0	-> + + + + + + + + + + + + + + + + + + +	EGF(Site!1).EGFR(Y1~p,Y2~p,ecd

View Generated Reaction

Species: 106

Search

Rule-Based Tutorial VCell 6.1: Deterministic Application

TIP: Check other VCell tutorials at <u>http://vcell.org</u> to learn about the use of Applications in VCell.

TIP: **Clamped** means that the value of species is kept constant during the simulation. Click on the top of the columns to order alphabetically on the values in this column.

TIP: Enabling/disabling reactions is very useful for model validation: see how the network size is changing when upstream or downstream reaction rules are disabled.

3)

TIP: Setting Max. Molecules/Species 11 means that complexes may have no more than 11 molecules. Mxx stoichiometry can be set for each individual molecule, meaning complexes may have no more than 100 of each molecules (default value). To avoid generation of infinite networks, species and directions have limits as well.

Network Constraints	1	Loft click	on				
	Constraint 1. Left click on			Value			Default
Max Iterations	Ne	etwork.				1	
Max Molecules / S	pecies		12			10	2. Left click
Species Limit	👹 Edit / Test Cor	ostraints		X		800	on Edit/Test
Reactions cimic		istraints		-		2500	Constraints.
Max molecules [=		100	constraintes.
Max molecules E	Max. Iterations	3				100	
Generated Network	Max. Molecules / Sp	ecies 1	1				
Species: unavailabl	Species <mark>Lim</mark> it	8	00			View	Edit / Test Constrai
	Reactions Limit	2	500				
Reactions: unavaila						View	Create new VCell BioModel fr
Observables Map	Molecule	Max. Sto	bichiometry			View	
Warning: none	EGF	100			\mathbf{X}	Max. Iterati	ons defines how
	EGFR	100				many rule a	pplications will
Search	Grb2	100				-	• •
A T	ShC	100				used. Start v	with a small
Object Properties An	Test / Run	Apply	Cancel	tion Status		number (e.g	g. 3) to run fast
Select only one object							ne generation is
Selectionly one object	eigi apecies, paci	ony sinala dony d	/ view/earcproper ac	3.			ie generation is
					\mathbf{X}	complete.	
3	. Left click					You can con	strain network
_							
	n Test/Run					generation	hy other

TIP: Network generation may take a long time, so the default values are set very low. Most likely, they are too low for the network to be generated fully, and you will need to increase them.

File Server Window Tools Help					
BioModel1	🔀 Geometry 😻 Specifi	ications 🗲 Protocols 📌	Simulations 🗠 Parameter Estimatio	on	
Physiology Seaction Diagram	Species Reaction Netv	work			
- Reactions (11)					
- 🗊 Structures (1)	Network Constraints				
- 💯 Species (5)	Na	ame	Туре		Value
- Molecules (4)	Max Iterations		value	3	
Observables (9) Applications (1)	Max Molecules / S	pecies	value	10)
= d/dt Application0					
Geometry					
- Specifications					
- > Protocols		at 1.1			
- A Simulations	Generated Network	Apply the new const	traints?		
Parameter Estimation Parameters, Functions and Units	Species: unavailable		=	View	Edit / Test Constraints
Pathway	Reactions: unavailat	Max. Iterations Max. Molecules / Species	3		Create new VCell BioModel from Network
	Reactions: unavailat			View	Create new VCell Blomodel from Network
	Warning: none	Warning: Max Iterations n	umber may be insufficient.		
VCell DB BMDB Pathway Comm Sabio			Apply Cancel		
BioModels MathModels Geometries	Search				
E Search	A T				
Biological Models	Object Properties Proble	ems (0 Errors, 1 Warnings)	O Database File Info Network Ge	neration Status	2. Unless the incomplete
My BioModels (2018nathans751) (16) Grad BioModels (0)					network is enough (e.g. if
Public BioModels (601)	Running BioNetGen				it is truncated by the
Tutorials (8)	Iteration 0:	5 species			
🗄 🧰 Education (34)	Iteration 1: Iteration 2:	6 species 7 species			maximum number of
1. Check generation	Iteration 3.	9 species			molecules per species),
progress. The last	Creating BNS output		click Cancel and choose		
iteration shown here still	Return SicNetGen out Total run time: 2.9		larger values.		
	Warning: Max Iterati	ions number may be insu			
generates new species, so	Please go to the Spe	ecifications / Network	panel and adjust the number of	f Iterations.	
the network may be not					
fully generated.					
iany Scheratea.					

TIP: If network generation takes too long, it can be cancelled. VCell has a hard limit on the maximum number of species and reactions. If a generated network size exceeds this limit, constraints will not be applied, and the model should be adjusted to become smaller, or a **Network-Free** application used instead.

File Server Window Tools Help			
BioModel1 Physiology Reaction Diagram	Geometry & Specifications > Protocols	🔏 Simulations 🗠 Parameter Estimation	
Reaction Diagram Seactions (11) Structures (1)	Network Constraints		
D Species (5) D Molecules (4)	Name Max Iterations	Type	Value
 Observables (9) Applications (1) 	Max Molecules / Species	value	11
 4/_{dt} Application0 Geometry Specifications Protocols Simulations 	Generated Network		
Parameter Estimation Parameters, Functions and Units Pathway VCell DB BMDB Pathway Comm Sabio	Species: unavailat Reactions: unavail Warning: none Max. Iterations Max. Molecules / Species Warning: none	View	Edit / Test Constraints Create new VCell BioModel from Network
BioModels MathModels Geometries Search Biological Models My BioModels (2018nathans751) (16) Shared BioModels (0) Public BioModels (601) Cutorials (8) Education (34)	Search Object Properties Running BIONEtGen Iteration 0: 5 species Iteration 1: 6 species Iteration 2: 7 species Iteration 3: 9 species Iteration 4: 18 species Iteration 5: 35 species Iteration 6: 60 species Iteration 7: 87 species Iteration 8: 106 species Iteration 9: 106 species Creating BNG output spec Return BioNetGen output to requester Total run time: 12.8 s.	1. Check generation means that the network	tatus 2. Click Apply to prepare network for simulation.

Rule-Based Tutorial VCell 6.1: Deterministic Application

TIP: All actions on this page are optional but highly recommended to verify that the generated network contains all expected, and does not contain unexpected, species and reactions. *Creating a new BioModel may take a long time and is not recommended for large networks*.

File Server Window Tools Help						
BioModel1 Physiology	🗯 Geometry 😻 Specificatio	ns 乡 Protocols 📌	Simulations 🗠 Param	neter Estimation		
- Physiology Reaction Diagram	Species Reaction Network					
Reactions (11)						
Structures (1)	Network Constraints					
Species (5)	Name		T	/pe		Value
Molecules (4)	Max Iterations		value	12		
Observables (9)	Max Molecules / Specie		value	12		
- Applications (1)	Max Molecules / Specie	5	value	12		
a d/dt Application0						
Geometry						
Specifications						
At Simulations	Generated Network	1. Click to se	e all species			
Parameter Estimation	Species: 106	in a separate	an-dod e	View		Edit / Test Constraints
Parameters, Functions and Units		•				
🕀 Pathway	Reactions: 684	window.		View	Create	new VCell BioModel from Network
A¥	Warning: none			-		
VCell DB BMDB Pathway Comm Sabio	Wanning. none					
BioModels MathModels Geometries	Search					
E Search	A V					
🗀 Biological Models	Object Properties Problems	(0 Errors, 0 Warnings	;) 🔘 Database File Int	fo Network Generation Status	1	
🕀 🦲 My BioModels (2018nathans751) (16)			_			
Shared BioModels (0)	Iteration U: 5 3	species		2. Click to see all		
⊕ 🚞 Public BioModels (601) ⊕ 🦳 Tutorials (8)		species				<u>^</u>
Education (34)		species		reactions in a		
		species species		separate pop-up		3. See a reaction
		species				
		species		window.		network in a
	Iteration 7: 87 s	species	L			separate window
		species				-
		species				(may take a long
	Creating BNG output spec Return BioNetGen output					time).
	Total run time: 12.8 s.	an reducerer				,
	Updating the network cor	nstraints with the	test values.			<u></u>
						v

Rule-Based Tutorial VCell 6.1: Deterministic Application

TIP: Filtering is very useful to verify the model. If you see that names of Molecules and Sites are too generic for efficient filtering – go back and change them. This is an easy and safe procedure, but you will need to rerun network generation. After the network is verified, it can be simulated.

Index	Name	Structure	Depiction	Expression		
1	R	Cell		EGFR(Y1~u,Y2~u,ecd,tmd)		
2	L	Cell	$\overline{\mathbf{v}}$	EGF(Site)		
3	Grb2	Cell	$\overline{\mathbf{v}}$	Grb2(sh2)		
4	ShcP	Cell	~~	Shc(Y~p,sh3)		
5	ShcU	Cell	~~	Shc(Y~u,sh3)		
6	s5	Cell		EGF(Site!1).EGFR(Y1~u,Y2~u,ecd!1,tmd)		
7	s6	Cell	QQQ 0000 QQQQ	EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~u,ecd!1,tmd!3).EGFR		
8	s7	Cell	QQQ 0000 QQ00	EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!1,tmd!3).EGFR		
9	s8	Cell	QQQ 0000 QQ00	EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~p,ecd!1,tmd!3).EGFR		
10	s9	Cell		EGF(Site!1).EGFR(Y1~p,Y2~u,ecd!1,tmd)		
11	s10	Cell		EGF(Site!1).EGFR(Y1~u,Y2~p,ecd!1,tmd)		
12	s11	Cell	QQQ 0000 QQ00	EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!1,tmd!3).EGFR		
13	s12	Cell	QQQ 0000 QQ00	EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~p,ecd!1,tmd!3).EGFR		
14	s13	Cell	QQQ 0000 QQ00	EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!2,tmd!3).EGFR		
15	s14	Cell	QQQ 0000 QQ00	EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~p,ecd!1,tmd!3).EGFR.		
16	s15	Cell	Q 0000 0000 Q Q	EGF(Site!1).EGF(Site!2).EGFR(Y1~p!3,Y2~u,ecd!1,tmd!4).EG		
17	s16	Cell	60000000000000000000000000000000000000	ECE(Site11) ECE(Site12) ECER(V1~u V2~nl3 ecdl1 tmdl4) EC		
Search						
+ -						
Θ	EGF	EG				
0	:0	Site	Site ecd t	$\frac{\text{md}}{3l} \underbrace{\begin{array}{c} Y1 \\ Y2 \end{array}} \underbrace{\begin{array}{c} ecd \\ l \\ 2l \\ 4l \end{array}} \underbrace{\begin{array}{c} tmd \\ Y1 \\ 4l \\ 2l \\ 4l \\ l \\$		

Close

Use these buttons to fit species and reaction rules on the screen.

Different bonds are shown in different colors.

TIP: Most models can be efficiently simulated locally (blue button). But if you want to save simulation results in the database for quick retrieval later on, the server simulation (green button) is recommended.

Rule-Based Tutorial VCell 6.1: Deterministic Application: simulation results

Creating Application: Stochastic

Initia	l Condition:	Concentrat	tion 🧿 Num	nber of Par	ticles Randomize
Species	Structure	Depiction	Clamped	Rules	Initial Condition
R	c0	0000			602.0 [molecules]
L	c0	\bigcirc			4094.0 [molecules]
Grb2	c0	\bigcirc			349.0 [molecules]
ShcP	c0	00			0.0 [molecules]
ShcU	c0	00			903.0 [molecules]

TIP: A stochastic application is recommended when the number of particles is low, and a deterministic simulation (using concentrations) may miss noise and fluctuations. It uses the same network generated by BioNetGen.

File Server Window Too	ols Help						
Rule_Based_Egrf Physiology Seaction Diagram Seactions (11) Structures (1) Secies (5) Molecules (4) Sobservables (9) Applications (1)		Species Reaction Network					
		Network Constraints					
		Name Max Iterations		Type	12	Value	
		Max Molecules / Species		value	12		
d/de Application0 ✓ ✓ Geometry ✓ Specificati ✓ Protocols	Rename Delete			 One can create a stochastic application by copying a deterministic application. Right click on Deterministic Application, select Copy As> Stochastic. Initial values of species will be capied to the new application. A Stachastic 			
A ² Simulation	Сору		letwork				
Parameter Parameters, Function	Copy As	Copy As Deterministic		species will be copied to the new application. A Stochastic			
Pathway	New BioMode	el From App	Stochastic 🥌	<i>application</i> uses the BioNetGen engine to generate a reaction network that is solved using direct or hybrid Gibson solvers.			
	Expand All		Network-Free				
VCell DB BMDB Pathwa	Collapse All			2 Alternatively a new or	nlightion can k	a created by a right	
BioModels MathModels Geometries Search		Search		2. Alternatively, a new application can be created by a right click on Applications, select New Application > Stochastic .			
E Search		AT		CIICK on Applications, sel	ect New Applic	ation > Stochastic.	
Biological Models My BioModels (2018n Shared BioModels (0) Public BioModels (601 Cutorials (8) Education (34)		Object Proper		nings) 🔇 Database File Info Network Ge	neration Status		

Rule-Based Tutorial VCell 6.1: Stochastic Application

TIP1: If the model was defined in concentrations, concentrations are converted into particle numbers using the volumes specified under Geometry. The default size is 5000 um3 (average cell size), so the number of particles will be exceedingly large. You need to decrease Size to a small simulation volume.

TIP2: To keep concentrations fixed, check "Concentration" before switching to Geometry and changing its Size.

🛪 Geometry 🛛 🎲 Specifi	cations 🗲 Protocols 🔏 Si	mulations			
Structure Mapping Geom	etry Definition				
		Physiology (structu	res)	Geometry (subda	Switching back and forth between Geometry > Structure Mapping and
Cell Cell Geometry Specifi Species Reaction Netwo	~ ~	Specifications > Species, make sure your simulation volume is sufficiently small, so that for given concentrations the number of particles is small enough for stochastic simulations.			
Species	Structure	Clamped	Initial Condition	Force Continuous	
R L Grb2 SchP SchU	Cell Cell Cell Cell		602.0 [molecules] 4094.0 [molecules] 349.0 [molecules] 0.0 [molecules] 903.0 [molecules]		

Rule-Based Tutorial VCell 6.1: Stochastic Application: simulation results

Creating Application: Network-Free

30

		Vie	w Data Output Species
Count	Structure	Depiction	BioNetGen Definition
1	c0		@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p!3,Y2~p).EGFR(ecd!4,tmd!2,Y1~p,Y2~u)
3	c0		@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p!3,Y2~u).EGFR(ecd!4,tmd!2,Y1~u,Y2~u)
1	cO		@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p,Y2~p!3).EGFR(ecd!4,tmd!2,Y1~p,Y2~u)
1	c0	0.0003.00030	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p,Y2~p).EGFR(ecd!3,tmd!2,Y1~p,Y2~u).EG
3	cO	0 0000 0000 00	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p,Y2~p).EGFR(ecd!3,tmd!2,Y1~u,Y2~u).EG
1	c0	000000000000	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p,Y2~u).EGFR(ecd!3,tmd!2,Y1~p,Y2~u).EG
1	cO	COCO089 COC09 COC09	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p,Y2~u).EGFR(ecd!3,tmd!2,Y1~u,Y2~p!4)
1	c0	00000000000	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p,Y2~u).EGFR(ecd!3,tmd!2,Y1~u,Y2~p).EG
6	cO	0.0003.0003.00	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~p,Y2~u).EGFR(ecd!3,tmd!2,Y1~u,Y2~u).EG
1	c0		@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~p!3).EGFR(ecd!4,tmd!2,Y1~p!5,Y2~u
5	cO		@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~p!3).EGFR(ecd!4,tmd!2,Y1~u,Y2~u)
1	c0		@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~p).EGFR(ecd!3,tmd!2,Y1~p!4,Y2~u)
1	cO	000000000000	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~p).EGFR(ecd!3,tmd!2,Y1~p,Y2~u).EG
1	c0	00000000000000000	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~p).EGFR(ecd!3,tmd!2,Y1~u,Y2~p!4)
6	c0	000000000000	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~p).EGFR(ecd!3,tmd!2,Y1~u,Y2~u).EG
3	c0		@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~u).EGFR(ecd!3,tmd!2,Y1~p!4,Y2~u)
6	cO	000000000000	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~u).EGFR(ecd!3,tmd!2,Y1~p,Y2~u).EG
7	c0	000000000000000	@c0:EGF(Site!1).EGFR(ecd!1,tmd!2,Y1~u,Y2~u).EGFR(ecd!3,tmd!2,Y1~u,Y2~p!4)
٩	c0	$\bigcirc \bigcirc $	@cfl:ECE(Sitel1) ECER(ecdl1 tmdl2 V1=11 V2=11) ECER(ecdl3 tmdl2 V1=11 V2=n) EC
Search	٩		Species: :

View Data Output Species

Rule-Based Tutorial VCell 6.1: Network-Free Application

TIP: A Network-Free application simulates timecourses for observables without network generation. If the network size is too large or infinite, it is the only way to compute observables. However, individual species are not visible. To check whether a specific species is populated, it can be added to the list of Observables.

TIP: The NFSim engine has a large number of fine-tuning options. Generally, default options should be sufficient to simulate most models. If necessary, click on Edit. Options are documented under ? and in the Help menu.

File Server Window Tools Help		
Rule_Based_Egrf Physiology Physiology Reaction Diagram Reactions (11) Structures (1) Species (5) Molecules (4) Observables (9) Applications (3) d'dd Application0 Copy of Application0 Copy of Copy of Application0 Geometry Specifications Protocols Simulations Parameters, Func Pathway VCell DB BMDB Path BioModels MathMode	V Edit Simulation1	3. Click to run locally (on user's computer).
Biological Models Biological Models (2 Biological Models (2 Biological Models (0) Biological BioModels (601) Biological BioModels (601) Biological BioModels (601) Biological Models (8) Biological Models (601) Biological Models (7 Biolog	Pr Output Times (Comma or space separated numbers, e.g. 0.5, 0.8, 1.2, 1.7) Advanced Solver Options Compute observables at output times only. Set the distance to molecules that might have to be updated: Turn on aggregate bookkeeping. Set the maximal number of molecules per Molecular Type. Set a seed to NFsim's random number generator. OK Cancel	5. Click to learn more.

Acknowledgements

This tutorial was created by Tanya Miller (2015, Pomperaug High School), Nathan Schaumburger (2017, Hall High School, West Hartford), Sreekirthana Kolla (2025, East Granby High School), Justine Laureano (2025, East Hartford High School) under guidance of Dr. Michael L. Blinov, Associate Professor, Center for Cell Analysis and Modeling. The students were funded by the Department of Health Career Opportunity Programs; the Aetna Foundation; Connecticut State Legislative Fund; John and Valerie Rowe Health Professions Scholars Program; The Hartford; the University of Connecticut Foundation; the Friends of the Department of Health Career Opportunity Programs; and UConn Health.