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Abstract 
Rule-based modeling involves the representation of molecules as structured objects and 
molecular interactions as rules for transforming the attributes of these objects.  The approach is 
notable in that it allows one to systematically incorporate site-specific details about protein-
protein interactions into a model for the dynamics of a signal-transduction system, but the 
method has other applications as well, such as following the fates of individual carbon atoms in 
metabolic reactions.  The consequences of protein-protein interactions are difficult to specify and 
track with a conventional modeling approach because of the large number of protein 
phosphoforms and protein complexes that these interactions potentially generate.  Here, we focus 
on how a rule-based model is specified in the BioNetGen language (BNGL) and how a model 
specification is analyzed using the BioNetGen software tool. We also discuss new developments 
in rule-based modeling that should enable the construction and analyses of comprehensive 
models for signal transduction pathways and similarly large-scale models for other biochemical 
systems. 
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1. Introduction 
 

BioNetGen is a set of software tools for rule-based modeling (1).  Basic concepts of rule-
based modeling and the BioNetGen Language (BNGL) are illustrated in Fig. 1--these concepts 
and the conventions of BNGL will be thoroughly discussed later in the text.  Here, in explaining 
how to use BioNetGen to model biochemical systems, we will be primarily concerned with 
signal-transduction systems, which govern cellular responses, such as growth and differentiation, 
to signals, such as hormones and cytokines.  In other words, signal-transduction systems are 
responsible for making decisions about the fates and activities of cells.  Decision making in these 
systems is accomplished by dynamical systems of interacting molecules (2). To develop 
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predictive computational models of these complex systems, we must be able to abstract their 
relevant details in a form that enables reasoning about or simulation of the logical consequences 
of a set of interactions, which enables the testing of model predictions against experimental 
observations (3).  Analysis of predictive models can help to guide experimental investigations 
and may ultimately enable model-guided engineering and manipulation of cellular regulation (4--
6).  Before beginning our discussion of BioNetGen, we will briefly recap features of signal-
transduction systems that motivate a rule-based modeling approach and the general idea of rule-
based modeling.  For more thorough reviews of these topics, see (7,8). 

A prominent feature of any signal-transduction system is an intricate network of protein-
protein interactions (9,10).  These interactions can have a number of consequences, including the 
post-translational modification of proteins, the formation of heterogeneous protein complexes in 
which enzymes and substrates are co-localized, and the targeted degradation of proteins.  For 
understanding and modeling the system dynamics of protein-protein interactions, the details that 
are most relevant are typically found at the level of protein sites, the parts of proteins that are 
responsible for protein-protein interactions.  These interactions are mediated by evolutionarily 
conserved modular domains of proteins that have binding and catalytic activities, such as Src 
homology 2 (SH2) domains and protein tyrosine kinase domains, and by short linear motifs (e.g., 
immunoreceptor tyrosine-based activation motifs or ITAMs) (11) with binding activities that can 
often be switched on and off through post-translational modifications, such as tyrosine 
phosphorylation (12--14).  A great deal of knowledge about the site-specific details of protein-
protein interactions has accumulated in the scientific literature and is being actively organized in 
electronic databases (15,16), and new technologies, such as mass spectrometry (MS)-based 
proteomics (17), can be applied to quantitatively monitor system responses to a signal at the level 
of protein sites on a large scale.  For example, time-resolved measurements of the 
phosphorylation of individual tyrosine residues are possible (18). 

Despite the high relevance of the site-specific details of protein-protein interactions for 
understanding system behavior, models incorporating these details are uncommon.  For example, 
the seminal model of Kholodenko et al. (19) and many of its extensions, such as the model of 
Schoeberl et al. (20), for early events in signaling by the epidermal growth factor receptor 
(EGFR) do not track the phosphorylation kinetics of individual tyrosines in EGFR.  Models that 
incorporate such details are generally difficult or impossible to specify and analyze using 
conventional methods, largely because of the combinatorial number of protein modifications and 
protein complexes that can be generated through protein-protein interactions (7,8).  For example, 
a protein containing n peptide substrates of kinases can potentially be found in up to 2n distinct 
phosphorylation states.  This feature of protein-protein interactions, which arises because a 
typical protein involved in cellular regulation contains multiple sites of post-translational 
modification and multiple binding sites, has been called combinatorial complexity and has been 
recognized as a significant challenge to our understanding of cellular regulation (7,21,22).  In a 
conventional model specification, which often takes the form of a list of the reactions that are 
possible in a signal-transduction system or the corresponding system of coupled ordinary 
differential equations (ODEs) for the chemical kinetics, each chemical species that can be 
populated and each reaction that can occur must be manually defined, which is infeasible for all 
but the simplest systems because of the vast numbers of chemical species and reactions that can 
usually be generated by protein-protein interactions. 

Another limitation of conventional modeling is a lack of standards for explicitly representing 
the composition and connectivity of molecular complexes.  The chemical species accounted for 
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in a typical model are represented as structureless objects whose identities and properties are 
referenced only by name. Modelers attempt to name model parameters and variables such that 
their names suggest what is being represented, but conventions vary and are often inconsistent. A 
dimer of EGFR molecules may be represented as R-R or R:R--designations that abbreviate 
EGFR to R (for receptor) and that indicate the composition of the complex--or simply as D (for 
dimer). A dimer of EGFR molecules associated with the adapter protein Grb2 may then be 
represented as R-R-Grb2, as D-Grb2 or even as R-Grb2 or simply by the index of a generic 
variable name (e.g., X5).  The latter examples obscure the fact that two receptor molecules are 
present in the complex.  Model(er)-specific nomenclatures thus present a challenge to 
understanding a model, especially a large model, which becomes particularly problematic when 
one attempts to reuse or extend a model. In addition, information about how two molecules are 
connected is nearly always absent in a conventional model specification, even though in many 
cases there is detailed site-specific information available about the interaction.  For example, 
interaction of EGFR and Grb2 occurs when the SH2 domain of Grb2 binds a phosphorylated 
tyrosine residue in EGFR, such as Y1068 (23). 

The limitations of conventional approaches to model specification noted above have 
prompted the development of formal languages specially designed for representing proteins and 
protein-protein interactions, the κ-calculus being an early and notable example (24).  One of 
these formal languages is the BioNetGen language (BNGL) (8), which is based on the use of 
graphs to represent proteins and protein complexes and graph-rewriting rules to represent 
protein-protein interactions (25,26).  BNGL allows site-specific details of protein-protein 
interactions to be captured in models for the dynamics of these interactions in a systematic 
fashion, alleviating both nomenclature and reusability issues (8).  BNGL also provides a means 
for specifying precise visualizations of protein-protein interactions (25,26).  Below, we provide a 
thorough overview of the text-based syntax and semantics of BNGL, an understanding of which 
is essential for using the BioNetGen software (http://bionetgen.org).  BioNetGen facilitates a 
rule-based approach to modeling biochemical reaction kinetics, an alternative to conventional 
modeling that largely overcomes the problem of combinatorial complexity (8).  We note that the 
current syntactical and semantic conventions of the κ-calculus are nearly identical to those of 
BNGL (27). 

In a rule-based approach to modeling, the molecular interactions in a system are abstracted as 
BNGL-encoded rules, which are precise formal statements about the conditions under which 
interactions occur and the consequences of these interactions.  Rules also provide rate laws for 
transformations resulting from molecular interactions.  At one extreme, a rule simply 
corresponds to an individual chemical reaction.  However, a rule is far more useful when local 
context governs an interaction, and the rule can be specified such that it defines not a single 
reaction but a potentially large class of reactions, all involving a common transformation 
parameterized by the same rate law.  The use of such rules to model protein-protein interactions 
can often be justified, at least to a first approximation, by the modularity of proteins (12).  Rules 
can be used to obtain predictions about a system’s behavior in multiple ways.  For example, they 
can serve as generators of a list of reactions.  In other words, a set of rules, which can be viewed 
as a high-level compact definition of a chemical reaction network, can be used to obtain a 
conventional model specification (1,28,29), which can then be analyzed using standard methods.  
Alternatively, rules can serve as generators of discrete reaction events in a kinetic Monte Carlo 
simulation of chemical kinetics (21,30,31).  A rule-based model is capable of comprehensively 
accounting for the consequences of protein-protein interactions, including all possible 
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phosphoforms of a protein and the full spectrum of possible protein complexes implied by a 
given set of interactions.  Such a model is specified using BNGL in a BioNetGen input file, 
which may also contain directions for processing the model specification.  For example, actions 
may be defined for simulating a model and producing desired outputs.  In the following, we will 
describe the elements of an example input file in detail. 

Since our initial application of a rule-based modeling approach in 2001 to study signaling by 
the high-affinity IgE receptor (32--34), the software that we have used in our work--initially a 
FORTRAN code called EQGEN--has evolved dramatically and has been applied to study a 
number of other biochemical systems (35--39). The initial version of BioNetGen was released in 
2004 (1).  The name “BioNetGen” is a mnemonic for “Biological Network Generator,” but this 
name should not be interpreted to delimit the full range of the software's capabilities. The 
software not only generates reaction networks from rules, but also simulates such networks using 
a variety of methods. Iterative application of rules to a set of seed species (see Fig. 1c) may be 
used to generate a network in advance of a simulation, which may subsequently be carried out 
either by numerically solving ODEs or by implementing a stochastic simulation algorithm (SSA) 
(40--42).  Alternatively, rules may be applied during a simulation as the set of populated species 
grows, a procedure that has been called ‘on-the-fly’ network generation and simulation (28,29).  
Finally, network generation may be avoided altogether by instantiating individual instances of 
chemical species and carrying out a discrete-event particle-based simulation, in which rules serve 
as event generators (21,30,31)  (see Section 3.7.2).  Simulation engines implementing such 
methods will soon be available within the BioNetGen framework and will be called through 
interfaces similar to those of the existing engines (see Section 3.6). 

Below, we summarize essentially everything a modeler needs to know to start developing 
and analyzing rule-based models with BioNetGen.  After an overview of the BioNetGen 
software distribution, we present a step-by-step guide to writing a BioNetGen input file, in which 
we carefully explain the elements of an example input file.  Numerous tips and tricks can be 
found in the Notes section.  Building on the basics, we then present several examples that 
illustrate more advanced BioNetGen capabilities.  Finally, we briefly discuss new developments 
in rule-based modeling that should enable the construction and analyses of large-scale 
comprehensive models for signal-transduction systems. 

 
2. Software 
 

BioNetGen is a set of integrated open-source tools for rule-based modeling. A schematic of 
the software architecture is shown in Fig. 2.  The software and documentation are available at 
http://bionetgen.org, a wiki site.  Downloading the software or modifying the wiki pages requires 
user registration with a valid email address.  The software is easy to install and runs with no 
compilation on Linux, Mac OS X, and Windows operating systems (see Note 1).  BioNetGen 
can be also used online (without installation) from within the Virtual Cell modeling environment 
(http://vcell.org/bionetgen). 

The components of BioNetGen include the network generation engine BNG2, which is 
written in Perl, the simulation program Network, which is written in C, a plotting program called 
PhiBPlot, which is written in Java, and a graphical front-end called RuleBuilder, which is also 
written in Java.  The core component, BNG2, which has a command-line interface, processes 
BioNetGen input files to generate two kinds of outputs: a chemical reaction network derived by 
processing rules and/or the results of simulating a model (see Note 2).  Input files are discussed 
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below at length.  Reaction networks are exported in a native .net format, in M-file format for 
processing by MATLAB (The MathWorks, Natick, MA), and in Systems Biology Markup 
Language (SBML), which is a community-developed standard for the encoding of biological 
models (43).  A network encoded in SBML can be processed by a variety of SBML-compliant 
software tools (for a list of these tools, see http://sbml.org).  An example of an SBML-compliant 
tool that complements BioNetGen is COPASI (44), which provides model analysis capabilities, 
such as parameter estimation methods, unavailable in the native BioNetGen environment.  
Simulation results are exported as tabular data in plain-text files that have the extension .cdat or 
.gdat.  A .cdat file contains time series for concentrations of chemical species.  A .gdat file 
contains time series for observables defined in a BioNetGen input file or .net file (see Section 
3.3).  Simulations specified in an input file are preprocessed by BNG2 and then passed to 
Network, which is a simulation engine driver.  Network interfaces with the CVODE package 
(45,46), a set of routines for solving stiff and non-stiff initial value problems for systems of 
ordinary differential equations (ODEs).  Network also provides an implementation of the direct 
method of Gillespie (40) for stochastic simulations.  The command-line interface of Network 
allows a .net file to be processed directly without preprocessing by BNG2, but this option is 
unavailable for simulation in on-the-fly mode (28,29), which necessarily requires communication 
between BNG2 and Network.  On-the-fly simulation is discussed further in Section 3.7.2.  
PhiBPlot is a utility for producing x-y plots from .cdat and .gdat files.  The .cdat and .gdat files 
can also be processed by other plotting tools, such as Grace (http://plasma-
gate.weizmann.ac.il/Grace).  RuleBuilder provides a graphical user interface to BioNetGen.  It 
also provides a drawing tool for creating and editing models that may be particularly helpful to 
new users. 

BioNetGen has been integrated into the Virtual Cell (VCell) modeling environment 
(http://vcell.org) as a stand-alone application called BioNetGen@VCell. A BioNetGen service is 
callable from a VCell user interface and runs on a client computer. The VCell user interface can 
be used to visualize and export simulation results. Alternatively, a VCell BioModel can be 
automatically created from an SBML file generated by BioNetGen@VCell. 

 
3. Methods 
 

We will illustrate the method of constructing a rule-based model by stepping through the 
BioNetGen input file shown in Listing 1, which specifies a simplified version of a model for 
early events in epidermal growth factor receptor (EGFR) signaling (35).  Additional examples 
can be found in the Models2 directory of the BioNetGen distribution available from 
http://bionetgen.org, or on the web at http://vcell.org/bionetgen/samples.html. A BioNetGen 
input file contains the information required to specify a model, including definitions of 
molecules, rules for molecular interactions, and model outputs, which we call “observables.” An 
input file may also contain commands called “actions” that act on the model specification, such 
as generating the network of species and reactions implied by rules, performing simulations, and 
translating the model into other formats.  The syntax of actions is borrowed from the Perl 
programming language. Model elements are specified in blocks delimited by ‘begin’ and ‘end’ 
tags as indicated in Listing 1. The five block types are ‘parameters’, ‘molecule types’, 
‘seed species’ ‘reaction rules’, and ‘observables’. The blocks may appear in any 
order. Actions to be performed on the model are controlled using commands that follow the 
model specification. All text following a ‘#’ character on a line is treated as a comment, and 
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comments may appear anywhere in an input file. Parsing of the input is line-based, and a 
continuation character, ‘\’, is required to extend a statement over multiple lines.  There is no limit 
on line length.  Any BioNetGen input line may begin with an integer index followed by space, 
which is ignored during input processing but may be useful for reference purposes.  For example, 
.net files produced by BioNetGen automatically index elements of each input block. 

The following is a list of the general steps involved in constructing a BioNetGen model with 
the relevant section of the BNGL input file shown in parenthesis: 

1) (parameters) Define the parameters that govern the dynamics of the system (rate 
constants, the values for initial concentrations of species in the biological system) (see 
Section 3.1). 

2) (molecule types) Define molecules, including components and allowed component 
states (see Section 3.2). 

3) (seed species) Define the initial state of system (initial species and their 
concentrations) (see Section 3.3). 

4) (observables) Define model outputs, which are functions of concentrations of species 
having particular attributes (see Section 3.4). 

5) (reaction rules) Define rules that describe how molecules interact (see Section 
3.5). 

6)  (actions) Pick method(s) for generating and simulating the network (see Section 3.6). 
Steps 1--5 may be done in any order and the entire protocol is likely to undergo multiple 
iterations during the process of model development and refinement.  Sections 3.1--3.6 describe 
the sections of the BNGL input file with specific reference to the model presented in Listing 1.  
Section 3.7 then presents two additional models that illustrate the use of more advanced 
language features. 
 
3.1. Parameters 
 

Model parameters, such as rate constants, values for initial concentrations of chemical 
species, compartment volumes, and physical constants used in unit conversions can be defined in 
the parameters block (see Note 0). Both numerical and formula-based parameter assignments 
are illustrated in the parameters block of Listing 1, which illustrates how formulas may be 
used to clarify unit conversions and to define a global parameter that controls the system size 
(see Note 4).  Parameters have no explicitly defined units, but must be specified in consistent 
units, as assumed by BioNetGen.  We recommend that concentrations be expressed in units of 
copy number per cell and bimolecular rate constants be expressed on a per molecule per cell 
basis, as in Listing 1.  This choice, which assumes that the reaction compartment is a single cell 
and its surrounding volume, allows one to direct BioNetGen to switch from a deterministic 
simulation to a stochastic simulation without changing parameter units. 
 
3.2. Molecule Types 
 

Molecules in a BioNetGen model are structured objects comprised of components that can 
bind to each other, both within a molecule and between molecules. Components typically 
represent physical parts of proteins, such as the SH2 and SH3 domains of the adapter protein 
Grb2, or the PxxP motif of the guanine nucleotide exchange factor Sos1 that serves as a binding 
site for SH3 domains. Components may also be associated with a list of state labels, which are 



 

 7 

intended to represent states or properties of the component.  Examples of component states that 
can be modeled using state labels are conformation (e.g., open or closed), phosphorylation status, 
and location. There is no limit on the number of components that a molecule may have or on the 
number of possible state labels that may be associated with a component (see Note 5). 

BioNetGen allows users to explicitly enforce typing of molecules using the molecule 
types block, which is optional but recommended.  The molecule types block defines the 
allowed molecule names, the components of each molecule type (if any), and the allowed states 
of each of these components (if any). Each molecule type declaration begins with the name of a 
molecule (see Note 6) followed by an optional list of components in parentheses (see Note 7). 
The tilde character (‘~’) precedes each allowed state value. In the input file of Listing 1, five 
molecule types are declared.  These molecules have 1, 3, 2, 1, and 0 components respectively.  
The component named Y1068 represents a tyrosine residue in EGFR that can be in either an 
unphosphorylated (U) or phosphorylated (P) state.  For a molecule to be able to bind another 
molecule at least one component must be defined. A molecule without components cannot bind 
or change states, but can be created or destroyed.  Such a molecule essentially corresponds to a 
named chemical species in a conventional model (see Section 3.5.6). A component that appears 
in a molecule type declaration without a state label may be used only for binding and may not 
take on a state label in subsequent occurrences of the same molecule. In contrast, the potential 
binding partners of a component are not delimited in a molecule types declaration. 

The namespaces for components of different molecules are separated, so it is permissible for 
components of different molecules to have the same name.  If two components of the same 
molecule have the same name, however, they are treated as separate instances of an identical 
type of object.  For example, the two Fab arms of an IgG antibody have identical antigen binding 
sites, which could be modeled as IgG(Fab,Fab). 

 
3.3. Seed Species 
 

The seed species block defines the initial chemical species to which rules are applied.  
This block may also be used to define the initial levels of populated species and identify species 
with fixed concentrations. Before discussing the details of the seed species block, we need to 
briefly explain how chemical species are represented in BNGL. 

Chemical species are individual molecules or sets of molecules connected by bonds between 
components, in which each component that has allowed state values has a defined state.  For 
example, a cytosolic complex of Grb2 and Sos1 in the model of Listing 1 would be represented 
as Grb2(SH2,SH3!1).Sos1(PxxP!1), where the ‘.’ character is used to separate molecules 
that are members of the same chemical species and the ‘!’ character is a prefix for a bond name 
(any valid name is allowed, but we recommend using an integer, which makes BNGL 
expressions more readable).  A shared name between two components indicates that the 
components are bonded. A complex of Grb2 and Sos1 that is associated with EGFR would be 
represented as EGFR(L,CR1,Y1068~P!2).Grb2(SH2!2,SH3!1).Sos1(PxxP!1), where the 
bond with the name ‘2’ in this expression indicates that the SH2 domain of Grb2 is connected to 
the phosphorylated residue Y1068 in EGFR (i.e., connected to component Y1068 of the 
molecule EGFR, which is in the P state).  Note that in a BNGL expression for a chemical species 
all components of each molecule are listed and each component that is allowed to have a state 
has one defined state chosen from among the set of possible states for that component. Wild card 
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characters, which represent non-unique states and bonds, are not allowed in BNGL chemical 
species expressions.  These wild card characters are discussed below in Section 3.4. 

Finally, we note that the presence or absence of the molecule types block affects the way 
that molecules appearing in the seed species block are type checked (see Note 8). 

Specifying the initial population level of a seed species is accomplished in the same way that 
a parameter value is assigned using either a numerical value or a formula, as can be seen in 
Listing 1 (see Note 9).  A species listed in the seed species block may also be designated as 
having fixed concentration (see Note 10). 

Representation of molecular complexes in BNGL has been presented in this section to 
introduce the syntax of bonds, but, generally speaking, it is not necessary to define seed species 
that are complexes of molecules because they can be generated through a process of equilibration 
(see Section 3.6), provided that there are rules that generate these complexes.  If a complex 
species is defined and no reaction rule is specified that causes dissociation of the complex, the 
complex will be indivisible.  A multimeric protein comprised of several polypeptide chains could 
be specified in this way. 
 
3.4. Observables 
 

The observables block is used to specify model outputs, which are functions of the 
population levels of multiple chemical species that share a set of properties.   For example, if one 
could measure the tyrosine phosphorylation level of a particular protein, then one might be 
interested in determining the total amount of all chemical species containing the phosphorylated 
form of this protein.  We call a function for calculating such a quantity and an “observable”. 
Observables are computed over a set of chemical species that match a search pattern or set of 
search patterns specified in BNGL (see Fig. 1b).  Each observable is defined by a line in the 
observables block consisting of an (optional) index, one of two keywords that defines the 
type of observable (Molecules or Species), a name for the observable, and a comma-separated set 
of search patterns (see Listing 1 and Note 11). Before we discuss the two types of observables 
and how they are computed, we will describe the basic syntax and semantics of patterns in 
BNGL, which are common to observables and to reaction rules. 

Patterns are used to identify a set of species that share a set of features, and their behavior is 
illustrated in Fig. 1b. Pattern specification includes one or more molecules with optional 
specification of connectivity among these molecules, optional specification of states of their 
components, and optional specification of how these molecules are connected to the rest of the 
species they belong to. Patterns are analogous to the regular expressions used in computer 
programming. A match between a chemical species and a pattern means that there exists a 
mapping (injection) from the elements of the pattern to a subset of the elements of the species. 
Roughly speaking, a species matched by a pattern includes this pattern as a part. Note that there 
may be multiple mappings of a pattern into a single species and that BioNetGen considers each 
mapping to be a separate match.  The formal definition of a match in the graph formalism upon 
which BNGL is based was given by Blinov et al. (26). Patterns are similar to species in that they 
are comprised of one or more molecules and may contain components, component state labels, 
and edges. Unlike in species, however, the molecules in patterns do not have to be fully specified 
and the molecules do not have to be connected to each other by bonds specified in the pattern.  
The absence of components or states in a pattern excludes consideration of the missing elements 
from the matching process, as illustrated in Fig. 1b.  In the model of Listing 1 observable 1 is 
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specified using the pattern EGFR(), which matches any species containing a molecule of EGFR, 
regardless of the state or binding status of any of its components.   

When a component is specified in a pattern, both the absence and presence of a bond name 
affects matching.  The specification of a component without an associated bond requires that the 
component is unbound in the corresponding match.  For example, observable 2 in Listing 1 uses 
the pattern, EGF(R), which selects only species in which the R component of EGF is unbound.  
The specification of a component with an associated bond is used to select bound components.  
If a complete bond is specified, as in observable 5, which selects complexes of Grb2 and Sos1, 
then the component must be bound in the manner indicated by the pattern (see Note 12). An 
incomplete bond may also be specified using ‘!+’, where the wild card ‘+’ indicates that the 
identity of the binding partner of a component is irrelevant for purposes of matching.  For 
example, observable 3 in Listing 1 uses the pattern, EGFR(L!+), which selects species in which 
the L component of EGFR is bound, regardless of the binding partner. A second wild card, ‘?’, 
may be used to indicate that a match may occur regardless of whether a bond is present or absent 
(see Note 13), and is sometimes required for the correct specification of observables.  For 
example, the two patterns EGFR(Y1068~P) and EGFR(Y1068~P!?) are not equivalent.  The 
first pattern selects only EGFR molecules in which the Y1068 component is phosphorylated and 
unbound, whereas the second pattern selects all EGFR molecules in which the Y1068 component 
is phosphorylated. (The second pattern is more relevant for comparing model predictions against 
the results of Western blotting with anti-pY antibodies.) Examples of patterns from the 
observables block of Listing 1 and their corresponding matches in the implied model are 
listed in Note 14. 

We are now ready to discuss the two types of observables.  An observable of the Molecules 
type is a weighted sum of the population levels of the chemical species matching the pattern(s) in 
the observable. Each population level is multiplied by the number of times that the species is 
matched by the pattern(s).  An observable of the Species type is simply an unweighted sum of 
the population levels of the matching chemical species (see Note 15 and 16). A Molecules type 
of observable is useful for counting the number of copies of a particular set of patterns in a 
system, e.g., the number of copies of receptors in receptor dimers.  A Species type of observable 
is useful for counting the populations of chemical species in a system containing a particular 
pattern (or set of patterns), e.g., the number of receptor dimers, as specified by observable 3 in 
Listing 1.  Changing the type from Species to Molecules for this observable would specify a 
function that gives the number of copies of receptors in receptor dimers. The values of 
observables computed by one of the simulation commands described below are written to a .gdat 
file (see Note 17). 
 
3.5. Reaction Rules 
 

The reaction rules block of a BioNetGen input file is used to specify rules, which 
describe the allowed ways in which species can be transformed and typically represent molecular 
interactions and the consequences of these interactions.  Each rule is similar to standard chemical 
reaction notation in that it has four basic elements: reactant patterns, an arrow, product patterns, 
and a rate law specification (see Note 18).  Patterns in rules have the same syntax and semantics 
as introduced above in our discussion of the observables block.  Reactant patterns are used to 
select sets of reactant species to which the transformation implied by the rule will be applied.  
The arrow indicates whether the rule is applicable in forward direction only (‘->’) or in both the 
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forward and reverse directions (‘<->’).  The product patterns define how the selected species are 
transformed by the rule and act as the reactant patterns when the rule is applied in reverse.  Rules 
may transform a selected set of reactant species by adding or deleting molecules or bonds and by 
changing component state labels.  Rules may not add or delete components of molecules (see 
Note 19). The default rate law for reactions produced by rules is an elementary rate law, in 
which the rate is given by the product of a multiplicity factor (usually an integer or !) generated 
automatically by BioNetGen (see Section 3.5.3), the specified rate constant (which may be a 
numerical value or a formula), and the population levels of the reactants.  This type of rate law is 
specified simply by appending a comma-separated numerical value or formula at the end of the 
line defining a rule, as illustrated in Listing 1.  Non-elementary rate laws, such as Michaelis-
Menten rate laws, may also be specified (see Note 20). For a rule that defines reverse reactions, a 
second numerical value or formula follows the first after a comma.  Rules 1, 2, 5 and 6 in Listing 
1 provide examples of how the parameters of two elementary rate laws are defined on the same 
input line. It should be noted that the parameter of a default rate law is taken to be a single-site 
rate constant (see Note 21). Additional commands that modify the behavior of rules may appear 
after the rate law specification (see Section 3.5.7).  

Consider the egfr_simple.bngl file illustrated in Listing 1. Each reaction rule is defined 
on one line of the input file. (Recall that long input lines can be continued using the ‘\’ 
character.)  The first six rules represent classes of reactions mediated by particular molecular 
interactions (e.g., rule 1 specifies a class of ligand-receptor binding reactions in which the R 
domain of the ligand associates with the L domain of the receptor) and the last rule represents a 
class of irreversible degradation reactions, which removes receptor dimers from the system while 
retaining cytosolic molecules bound to the receptor complex.  Rules 3 and 4 also define classes 
of irreversible reactions, whereas the remaining rules define classes of reversible reactions.  The 
molecularity of a reaction, M, is the number of species participating in the reaction.  The 
molecularity of all reactions generated by a given rule is fixed and is equal to the number of 
reactant patterns, which are separated by ‘+’ characters.  The value of M for rules 1--7 in Listing 
1 is 2, 2, 1, 1, 2, 2, and 1, respectively. The ‘+’ character is used on the right side of a rule to 
define the number of products produced by a reaction and the molecularity of reverse reactions 
(if the rule is reversible).  In Listing 1, rules 1--6 each have one product, and the reverse 
reactions have 2, 2, 1, 1, 2, and 2 product(s), respectively.  Reactions defined by rule 7 have a 
variable number of products because of the DeleteMolecules keyword, which is discussed 
later in this section.  

We will now discuss the five basic transformations that can be carried out by a BioNetGen 
rule. These transformations are (1) add a bond, (2) delete a bond, (3) change a component state 
label, (4) delete a molecule, or (5) add a molecule.  In each case there is a direct correspondence 
between a transformation of a set of graphs and a biochemical transformation of the molecules 
represented by the graphs (26). For example, adding a bond between the interacting components 
of two binding partners corresponds to connecting two vertices in the graphs representing these 
binding partners. In the following subsections we will discuss each of these types of 
transformations and present examples.  A transformation is specified implicitly by the difference 
between the product and reactant patterns in a rule. BioNetGen automatically determines a 
mapping from reactant molecules and their components to product molecules and their 
components, and from this mapping determines the set of transformations implied by a rule. 
Although we will note exceptions, we recommend in general that each rule apply only a single 
transformation. A user may manually override automatic mapping through the use of molecule 
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and component labels, as discussed in Section 3.7.1 (see Note 22) (28,38). Such labels have been 
used to create a database of carbon atom fates in metabolic reactions (38). 

 
3.5.1. Add a Bond 
 

A rule may add bond labels (e.g., ‘!1’) to specific components of reactant species selected by 
the reactant pattern(s) in the rule, which results in the formation of a new bond.  Including a bond 
in a product pattern that is absent in the reactant pattern(s) specifies this action. The simplest 
example of such a transformation is provided by the rule ‘A(a)+B(b)->A(a!1).B(b!1) 
k_bi’, which specifies the association of molecules A and B through the formation of a bond 
between components a in molecule A and b in molecule B.  Note that the ‘+’ character constrains 
the molecularity to 2, which means that a and b must belong to separate species, precluding 
binding of A to B when these molecules are part of the same complex.  To specify intracomplex 
binding of a and b, we could specify the rule as ‘A(a).B(b)->A(a!1).B(b!1) k_uni’, 
where the ‘.’ character in the reactant pattern indicates that the molecules A and B are part of the 
same complex.  Note that these two rules have bimolecular and unimolecular rate laws 
respectively because they have different molecularities, and thus the units of k_bi and k_uni 
necessarily differ. As noted above, it is the modeler’s responsibility to specify values of model 
parameters using consistent units. 

Let us consider rule 1 in Listing 1, which provides an example of a reaction rule for the 
reversible binding of a ligand to a receptor.  We first consider application of the rule in the 
forward direction (application of the rule in reverse will be considered in Section 3.5.2).  The 
reactant pattern EGF(R) selects ligand (EGF) molecules that have an unbound R component. 
Since EGF molecules in this model have only one component, the only species that is selected by 
this pattern is EGF(R) (Here, we adopt the convention that the image of a pattern in a matching 
species is shown in bold.) The pattern EGFR(L,CR1) selects EGFR molecules with unbound L 
and CR1 components, regardless of the binding or phosphorylation status of the Y1068 
component of EGFR.  For example, the pattern would select all of the following possible 
species: EGFR(L,CR1,Y1068~U), EGFR(L,CR1,Y1068~P), and 
EGFR(L,CR1,Y1068~P!1).Grb2(SH2!1,SH3). By specifying the component CR1 in the 
pattern and indicating that this component is free (by the absence of a bond specification), we are 
requiring that the CR1 component be unbound.  Because receptors must associate via the CR1 
domain to form dimers, as specified by rule 2, this means that ligand can bind receptor 
monomers but not dimers through rule 1.  Rule 1 can be made independent of the state of CR1 by 
simply omitting it from the pattern for EGFR.  In other words, by specifying EGFR(L) instead of 
EGFR(L,CR1), ligand is allowed to associate with (and dissociate from) both monomeric and 
dimeric receptors. The general principle is that a reaction rule should only include molecules, 
components, state labels, and bond specifications that are either modified by a transformation or 
that affect the transformation.  We call the component(s) directly modified by a transformation a 
reaction center and the rest of the information included in a rule the reaction context.  For 
clarity, we will underline the reaction centers in the rules (see Listing 1).  The process of rule 
application is illustrated in Fig. 1 and further examples are listed in Note 23. 

Let us now consider rule 2 of Listing 1, which specifies the reversible dimerization of 
ligand-bound EGFR and illustrates the use of bond wild cards in the reactant specification.  The 
‘!+’ string following the L component of each EGFR means that the L component must be bound 
(albeit in an unspecified way) for the pattern to match and thus for the reaction to take place.  
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Another important feature of this rule is that it is symmetric with respect to interchange of the 
two reactant patterns, which is detected automatically by BioNetGen, which then ensures that 
generated reactions are assigned rate laws with correct multiplicity.  Reaction multiplicity, which 
is a multiplicative factor in a rate law, is discussed in more detail below in Section 3.5.3. For 
many users, it is sufficient to note that BioNetGen automatically detects symmetries in rules and 
generates reactions with correct multiplicities.  
 
3.5.2. Delete a Bond 
 

Rules specify bond deletion when a bond that appears in the reactant patterns has no 
corresponding bond on the product side (see Note 24).  Frequently, bond deletion rules are 
specified simply by making a bond addition rule reversible, as in the extension of the elementary 
bond addition rule above to ‘A(a)+B(b)<->A(a!1).B(b!1) k_a,k_d’.  Bond dissociation 
step can also be specified using a uni-directional rule, as in  ‘A(a!1).B(b!1)-> A(a)+B(b) 
k_d’.  The reversible rule syntax is provided solely as a matter of convenience; the functional 
behavior of the rules is identical whether an association/dissociation pair is specified as a single 
reversible rule or as two irreversible rules with the reactant and product patterns interchanged 
(see Note 25).  Note that the molecularity of the products in the dissociation rule (2 in this case) 
has a restrictive effect analogous to that of the specification of molecularity in the association 
rule.  When the rule is applied to a species selected by the reactant pattern, a reaction is 
generated only if removal of the specified bond eliminates all possible paths along bonds 
between A and B, i.e., if bond removal produces two separate fragments.  Specifying bond 
dissociation that does not result in breakup of the complex requires a rule of the form  
‘A(a!1).B(b!1)-> A(a).B(b) k_d’. An example illustrating the different action of these 
two rules is provided in Note 26. 
As an example of a bond deletion rule that has additional reaction context, let us consider the 
reverse of the dimerization rule discussed in Section 3.5.1, 
   EGFR(L!+,CR1!1).EGFR(L!+,CR1!1)-> EGFR(L!+,CR1) + EGFR(L!+,CR1) km2 
which breaks the bond between the CR1 components of two receptors in a complex.  The 
contextual requirement that an L component of each EGFR also be bound is specified using the 
bond wild card ‘L!+’.  The molecularity of the products in the rule means that the rule will only 
be applied if breaking the bond results in dissociation of aggregate.  It is important to note here 
that the bond wild card ‘!+’can only be used to specify context; it is not permitted to break a 
bond that is only partially specified because such a rule would leave the molecularity 
unspecified. 
 
3.5.3. Change a Component State Label 
 

Rules specify a change in the state label of a component whenever the state label of a 
component changes in going from its appearance in the reactants to its corresponding occurrence 
in the products.  State label changes may be used to represent covalent modification, a change in 
conformation, translocation between two compartments, or any other property of a molecule that 
might influence its subsequent reactivity.  The simplest possible example of a rule specifying a 
state label change is rule 4 of Listing 1, 

EGFR(Y1068~P) -> EGFR(Y1068~U)  km3 
which encodes the dephosphorylation of a receptor tyrosine, through a change in the state label 
for Y1068 from ‘P’, representing the phosphorylated state,  to ‘U’, representing the 
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unphosphorylated state (see Note 27). It should be noted that just as for bond addition and 
deletion reactions, the rate constant should be specified as if only one instance of the reaction 
implied in the rule is possible for any given set of reactant species (see Note 21).  BioNetGen 
will generate a distinct reaction for each distinct occurrence of the reactant pattern in a species.  
For example, consider the application of rule 4 to the following species in the EGFR network: 

EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P).EGFR(CR1!3,L!2,Y1068~P) 
The two occurrences of the reactant pattern are shown in bold. During the process of network 
generation this species is automatically assigned the index 11, which is used to reference species 
in the reactions and groups blocks of the resulting .net file.  Because this species is 
symmetric, application of the rule generates two instances of the dephosphorylation reaction 
11→8, and species 8 is  
 EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~U).EGFR(CR1!3,L!2,Y1068~P) 
In this case, application of rule 4 to the first Y1068 appearing in species 11 generates the same 
species as application of the rule to the second instance (see Note 29). Upon generation of a 
reaction, BioNetGen checks to determine whether the reaction is identical to one that has already 
been generated. If so, the multiplicity of the reaction is incremented by one (see Note 30).  So 
application of rule 4 to species 11 produces the reaction 11→8 2*km3, where ‘2*km3’  
following the reaction refers the to constant portion of the elementary rate law that is used to 
compute the rate of the reaction. The multiplicity of the reaction is 2, and the rate is given by 
2*km3*X11, where X11 is the population level of species 11. 
As in other reaction rules, additional contextual information can be supplied to restrict 
application of a rule.  An example of a rule that uses contextual information in this way is rule 3 
of Listing 1, which specifies phosphorylation of Y1068 within a receptor aggregate: 

EGFR(CR1!+,Y1068~U) -> EGFR(CR1!+,Y1068~P) kp3 
In this rule, the wild card operator ‘+’ is used to specify that the phosphorylation reaction occurs 
only for a receptor that is part of a receptor dimer.  Because in this model the CR1 domain can 
only bind to another CR1 domain, requiring CR1 to be bound, as specified here, is equivalent to 
requiring that another EGFR be present in the aggregate (see Note 31). Thus, the rule above 
models trans (auto)phosphorylation of Y1068 catalyzed by the protein tyrosine kinase domain in 
a neighboring copy of EGFR. 
 
3.5.4. Add a Molecule 
 

In addition to the operations described in the previous sections, rules may also specify the 
creation of new molecules as products, which could be used to model, for example, translational 
processes or transport across the cell membrane.  As a simple example how to introduce a source 
for a protein A, consider the rule  

I -> I + A(a,Y~U) ksynth 
where I is a structureless molecule.  The appearance of I on both the reactant and product sides 
of the rule means that its concentration will not change as a result of the reaction occurring.  If 
the species ‘I()’ , is set to have a concentration of 1 in the seed species block and its 
concentration is not affected by any other rules, the rate constant ksynth will be have units of 
concentration/time and will define the synthesis rate of the species A(a,Y~U). Note that 
BioNetGen does not allow the number of reactants or products in a reaction to be zero, which is 
why the molecule I must be included in this rule. Molecule addition is specified any time that a 
molecule appearing on the product side of a rule has no corresponding molecule on the reactant 
side.  Appearance of a new molecule in the products generates an error unless the molecule is 



 

 14 

fully specified, i.e., all components of the molecule are listed and those components requiring a 
state label have a valid specified state label, and connected to the remainder of the pattern in 
which it appears. New molecules can also be combined with reactant molecules, as in the rule 
 B(b) -> B(b!1).A(a!1,Y~U) ksynth 
which creates a new molecule of A bound to a B molecule. 
 
3.5.5. Delete a Molecule 
 

Rules may also specify degradation of specified molecules or of entire species matching a 
particular reactant pattern by omitting reactant molecules in the product patterns.  Because 
degradation rules may specify deletion of individual molecules or entire species, the semantics of 
degradation rules are somewhat more complicated than those of other rules considered so far.  
Let us first consider the simplest form of a degradation rule  

A() -> Trash() kdeg 
which specifies degradation of any species in which the molecule A appears.  Degradation of a 
species is specified whenever all of the reactant molecules used to select the species are omitted 
from the products.  This rule also specifies the synthesis of a Trash molecule, which is necessary 
because BioNetGen requirements that at least one product molecule be specified.  Note that the 
species Trash() acts as a counter for the number of A-containing species that have been 
degraded (see Note 32). If multiple molecules of A can appear within a single species, 
degradation reactions involving these species would have multiplicity equal to the number of 
occurrences of A in the degraded species. In other words, a species containing n copies of A will 
be degraded n times faster than a species containing only a single copy of A.  If this behavior is 
not the desired, then the multiplicity can be held to one by specifying the MatchOnce attribute 
for the reactant pattern, as in 

{MatchOnce}A() -> Trash() kdeg 
As of this writing MatchOnce is the only recognized pattern attribute. 
Rules can also specify the degradation of a set of molecules within a complex, which can be 
accomplished in one of two ways.  First, one can specify the degradation of a molecule or 
molecules within a reactant complex by transferring to the products at least one of the molecules 
used to select the complex on the reactant side.  The simplest example is the rule 
 A().B() -> B() kdeg 
which specifies the deletion of the matching A molecule in the complex.  When the rule is 
applied, the A molecule and all of its bonds will be deleted.  If this action leaves behind only a 
single connected fragment containing the matched B molecule, a reaction will be generated.  If, 
however, deletion of A leaves behind multiple fragments, no reaction will be generated.  The 
keyword DeleteMolecules can be added to the rule following the rate law to bypass this 
constraint, as in  
 A().B() -> B() kdeg DeleteMolecules 
which, when applied to the complex C(c!1).A(a1!1,a2!2).B(b!2), would generate the 
reaction 

C(c!1).A(a1!1,a2!2).B(b!2) -> C(c) + B(b) kdeg 
The deletion of the A molecule from the C-A-B chain produces a C fragment and a B fragment.  
The DeleteMolecules keyword can also be used when no molecules from the reactant pattern 
remain in the products.  Thus, the species-deleting rule from the previous paragraph can be 
transformed into a molecule-deleting rule  

A() -> Trash() kdeg DeleteMolecules 
which has the same action on the C-A-B complex as the rule above. 
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Rule 7 of Listing 1 provides an example of how such a rule might be used to model endosomal 
degradation of signaling complexes in which some components of the complex are recycled.  
The rule specifies that the EGFR dimer and both associated EGF molecules are degraded, but the 
DeleteMolecules keyword means that additional molecules associated with the complex will 
be retained as products in any generated reactions.  Thus, any Grb2 molecules that associate with 
such a dimer and any Sos1 molecules that bind to dimer-associated Grb2 molecules are 
(effectively) returned to the cytoplasm when the receptor complex is degraded. 
 
3.5.6. Encoding Conventional Reactions 
 

Addition and deletion actions may be combined within single rules to construct rules that 
describe conventional mass action kinetics involving structureless species.  A typical rule of this 
type would be  

A + B -> C kAB 
which encodes the deletion of A and B and the addition of C.  This rule will be valid only if the 
molecule C is defined to have no components, and it will have the intended meaning only if A 
and B are also structureless.  Any standard reaction scheme can thus be trivially encoded in 
BioNetGen, although the power of the rule-based approach is lost.  Structureless species may be 
useful as sources and sinks, and may also be used to represent small molecules or atoms. Note 
that A and A() are equivalent representations for a molecule or species A, in that neither 
representation specifies the substructure of A. 
 
3.5.7. Commands for Modifying Rule Application 
 

As described in Section 3.5.5, BioNetGen includes several commands that modify the 
application of rules.  These commands have been introduced to address the need for specific 
behaviors that are difficult or impossible to specify using the semantics of patterns and 
transformation rules alone.  In this section, we cover the include/exclude commands that 
provide a basic logic for extending the selection capabilities provided by patterns.  In the future 
we anticipate the development of a “pattern logic” that will provide these capabilities in a more 
general way. 

The basic functionality of the include_reactants and include_products commands 
is to add criteria for the selection of reactant species to be transformed by a rule or the 
acceptance of products species generated by a rule.  In other words, these commands provide an 
AND operator for pattern matching.  The basic syntax of the include commands is illustrated by 
the rule 
 A(a) + B(b) -> A(a!1).B(b!1) kab include_reactants( 2, R1, R2) 
which specifies that a bond will be created between a reactant species containing a free 
component a of a molecule A and a second reactant species containing a free component b of a 
molecule B only if the second reactant species also includes a molecule of either R1 or R2.  The 
first argument of an include command is always a number corresponding to the index of a 
reactant or product pattern in the rule (1 for the first reactant/product, 2 for the second, etc.), and 
the remaining arguments are BNGL patterns, at least one of which must generate a match for the 
species to be selected.  In logical terms, the effective pattern for the second reactant in this rule 
becomes ‘B(b) AND (R1 OR R2)’.  Any valid BioNetGen pattern may be used as an argument 
to an include_reactants or include_products command.  Multiple include commands 
applying to the same reactant or product pattern can be specified to create additional selection 
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criteria for a species, and thus function as additional AND operators.  To generate similar 
behavior without the include command, two rules would have to be specified: 

A(a) + B(b).R1 -> A(a!1).B(b!1) kab 
A(a) + B(b).R2 -> A(a!1).B(b!1) kab 

where the ‘.’ operator is used to test for the presence of an additional molecule in the second 
reactant complex.  It is worth noting that the rule using the include_reactants command 
behaves slightly differently in this case than the pair of rules, because the latter may each 
generate multiple matches to the same reactant species if multiple molecules of either R1 or R2 
are present.  For instance, the pattern ‘B(b).R1’ generates two matches to the species 
‘B(b.r!1).R1(r!1,d!2).R1(r,d!2)’ because R1 in the pattern can be mapped onto either 
of the two R1’s in the complex. It is easy to specify two rules that have the same behavior as the 
one rule by extending the pattern ‘B(b).R1’ to ‘B(b.r!1).R1(r!1)’.   Unfortunately, as 
illustrated in this example, subtle differences in the way that rules are specified can have 
dramatically different effects, which are sometimes difficult to anticipate. This problem will be 
alleviated in the future by extending BioNetGen to allow a user to differentiate between the 
reaction center (the part of a pattern affected by a transformation) and reaction context (the part 
of a pattern necessary for a transformation to occur) in rules.  

The ‘exclude_reactants(index,pattern1,pattern2,…)’ and 
‘exclude_products’ commands have the same syntax as the include commands but apply 
the logic ‘pattern_index AND ((NOT pattern1) OR (NOT pattern2) …)’, where pattern_index is 
the pattern used to specify the reactant or product with the specified index.  Equivalent 
functionality can be obtained by the use of patterns alone, but in complex cases several patterns 
may be required to accomplish the same effect.  It should be noted that when they appear in 
reversible reactions, include_reactants and exclude_reactants are automatically 
transformed into include_products and exclude_products respectively when the rule is 
applied in the reverse direction. Appearances of include_products and exclude_products 
commands are also similarly transformed. 
 
3.6. Actions 
 

BioNetGen is capable of performing two basic types of actions with a model specification in 
an input file: generate a chemical reaction network implied by the model specification and 
simulate the network (e.g., solve an initial value problem for the system of coupled ODEs that 
provides a deterministic description of the reaction kinetics in the well-mixed limit).  These 
actions are controlled using commands that follow the model specification blocks we have 
discussed in the previous section (see Listing 1). Other commands export BioNetGen-generated 
networks in various formats.  All of the available commands and the parameters that control 
them are summarized in Table 1, which also summarizes the general syntax. 
 
3.6.1. Generating a Network 
 

The commands shown in Listing 1 illustrate the range of actions that can be performed on a 
BioNetGen model.  The generate_network command directs BioNetGen to generate a 
network of species and reactions through iterative application of the rules starting from the set of 
seed species.  At each step in this iterative process, rules are applied to the existing set of 
chemical species to generate new reactions.  Following rule application, the species appearing as 
products in the new reactions are checked to determine whether they correspond to existing 
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species in the network (26) (see Note 33). If no new species are found, network generation 
terminates. 

Restrictions on rule application may be useful when rules sets would otherwise produce very 
large or unbounded networks (see Note 34). These restrictions can be imposed using optional 
arguments to the generate_network command, which are shown in Table 1. The three basic 
restrictions that can be specified are an upper limit on the number of iterations of rule application 
(max_iter), an upper limit on the number molecules in an aggregate (max_agg), and an upper 
limit on the number of molecules of a particular type in an aggregate (max_stoich).  An 
example of a command specifying all three restrictions in the order given above is 
 generate_network({max_iter=>15,max_agg=>10,max_stoich=>{L=>5,R>5}}); 
This command limits the number of iterations to 15, the maximum size of an aggregate to 10 
molecules, and the maximum number of L or R molecules in an aggregate to be 5.  An example 
illustrating the use of such restrictions is given in Section 3.7.2. 

When network generation terminates, whether through convergence or when a stopping 
criterion is satisfied, the resulting network is written to a file with the .net extension (see Note 
28).  By default the basename of this file is determined from the basename of the input .bngl file.  
For example, the generate_network command in the file egfr_simple.bngl creates the 
file egfr_simple.net by appending the .net extension to the basename egfr_simple.  The 
options prefix and suffix, which are taken by all commands that write output to a file, can be 
used to modify the basename of all files generated by the command (see Note 35).  By default, 
generate_network will terminate with an error if the .net file it would produce exists prior to 
network generation.  This behavior can be overridden by setting option overwrite=>1, as 
shown in Listing 1. This option can be useful during the debugging phase of model 
development. 
 
3.6.2. Simulating a Network 
 

Once a network has been generated, a simulation can be specified using the simulate_ode 
or simulate_ssa commands. The simulation specified in the example in Listing 1 consists of 
three phases, which we now summarize and which will be described in detail below.  The first 
phase is equilibration, in which reactions that can occur prior to the introduction of the EGF 
ligand are allowed to reach steady state. Time courses produced by the first simulate_ode 
command, which terminates when the species concentrations pass a numerical check for 
convergence, are written to the files egfr_simple_equil.gdat and 
egfr_simple_equil.cdat (assuming the input file is named egfr_simple.bngl). Before 
the second phase of simulation, ligand is introduced (using setConcentration), the 
concentrations at the end of equilibration are saved (using saveConcentrations), and the 
network is written to an SBML file (using writeSBML). The second simulate_ode command 
then initiates a simulation of the dynamics following introduction of EGF ligand into the system.  
The results are written to the files egfr_simple.gdat and egfr_simple.cdat.  The third 
phase is then preceded by a resetConcentrations command, which restores the 
concentrations to the initial values used in the second phase, i.e., following equilibration and 
introduction of EGF.  The simulate_ssa command then initiates the third and final phase of 
simulation, a kinetic Monte Carlo simulation using the Gillespie algorithm, and results are 
written to the files egfr_simple_ssa.gdat and egfr_simple_ssa.cdat. 
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In the equilibration phase the population level of the ligand (EGF(R)) is zero, as specified in 
the seed species block of Listing 1.  Network generation is unaffected by the population 
levels of the seed species, but in the absence of ligand the only reactions with nonzero flux are 
the binding and unbinding reactions of Grb2 and Sos1 in the cytosol, which are defined by rule 
6.  The purpose of the equilibration phase is then to allow the concentrations of free Grb2, free 
Sos1, and the cytosolic Grb2-Sos1 complex to reach steady state levels, which we would expect 
to find in the resting state of the cell. 

The first simulate_ode command propagates the simulation forward in time (in large time 
steps) and checks for convergence to a steady state.  By going over each of the options used in 
this command, we will provide an overview of the operation and capabilities of the 
simulate_ode command. The ‘suffix=>equil’ appends  ‘_equil’ to the basename for 
output files of the simulation, which becomes here  ‘egfr_simple_equil’.   This prevents 
output files from the equilibration phase from being overwritten by subsequent simulation 
commands.  The end time (t_end) for the simulation is given a sufficiently large value to ensure 
that steady state is reached prior to the end of the simulation (see Note 36).  The number of steps 
at which results are written to the output files is specified by the n_steps parameters, which is 
set to a relatively small value here because we are only interested in reaching steady state and not 
in tracking the time course.  The interval between reporting of results is given by 
(t_end/n_steps), which is 10,000 seconds in this case.  (Note that the n_steps parameter 
controls only the reporting interval and not the step size used by the CVODE solver, which uses 
adaptive time stepping).  Results can also be reported at unevenly spaced intervals (see Note 37). 
The sparse option invokes fast iterative methods in the CVODE solver that can greatly 
accelerate the simulations (see Note 38).  The steady_state flag causes a check for the 
convergence of the species population levels to be performed following each report interval, with 
the propagation terminating if the root mean square of the relative change in the population 
levels falls below a threshold, which is taken to be 10×atol, the absolute integration tolerance.  
Note that the basic operation of the simulate_ssa command is the same as that of the 
simulate_ode command.  A summary of options available for the simulation commands is 
given in Table 1.  Of the options discussed above, only steady_state and sparse are not 
available for use with simulate_ssa. 

After completion of a simulation, the final population levels of all species in a network are 
saved and used by default as the initial population levels for subsequent simulation commands.  
In the example, we have modified or overridden this behavior by using the setConcentration 
(see Note 39) or resetConcentrations commands (see Note 40).  Additional options are 
discussed in Section 3.6.4. 

 
3.6.3. Viewing the Simulation Results 
 

We now consider visualization of the output produced by the two simulation commands that 
follow equilibration.  Each simulation is run from the same initial conditions, but the second is 
run using the simulate_ssa command, which produces a stochastic (discrete-event) trajectory 
using the direct method of Gillespie (40).  Trajectory data are written into two multi-column 
output files for each simulation: a .gdat file that reports the value of each defined observable at 
each sample time and a .cdat file that reports the population level of every species in the network 
at each sample time.  To avoid overwriting the data produced by simulate_ode, the 
simulate_ssa command sets the suffix parameter to ‘ssa’, so that the basename of the file 
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becomes ‘egfr_simple_ssa’.  Both data file types are in ASCII format, so they can be viewed 
in a text editor or imported into any number of different plotting and data analysis programs.  
The BioNetGen distribution includes the PhiBPlot plotting utility, which is a Java program that 
can be run by double-clicking on the file PhiBPlot.jar in the PhiBPlot subdirectory of the 
distribution or by typing ‘java –jar path/PhiBPlot.jar [datafile]’ on the command 
line.  PhiBPlot can display data from up to two BioNetGen data files at a time and is useful for 
quickly visualizing the results of a BioNetGen simulation and for comparing the results of two 
(see Fig. 3). 
 
3.6.4. Simulating a Previously-Generated Network 
 

Network generation can be the most time-consuming part of processing a BioNetGen input 
file, and during repeated simulations of the same network (e.g., with varying parameters) one 
may wish to avoid regenerating the network.  There are several ways to achieve this outcome.  
The first way, presented in the example above, is to run multiple simulations within the same 
input file using the saveConcentrations, and resetConcentrations commands in 
combination with the setConcentration and setParameter commands to vary initial 
conditions and parameters (see Note 41). 

In some cases, however, it may be desirable to re-load a network that was generated during a 
previous invocation of BNG2.pl.  The readFile command provides a way to fully restore a 
previously generated network so that parameters and species concentrations can be modified 
using the set commands.  The basic syntax is illustrated by the command 

readFile({prefix=>"testread",file=>"egfr_simple.net"}); 
which restores the network generated in the example of Listing 1 with population levels set to 
their post-equilibration values (see Note 42).  The readFile command, unlike other BioNetGen 
commands, resets the global basename to be the basename of the file argument, which is 
‘egfr_simple’ in the example given above.  The prefix parameter is set here to override this 
behavior and to set the basename for subsequent simulations commands to ‘testread’rather 
than egfr_simple. 

Reading a previously generated network from a file is always much faster than re-generating 
the network, but can still be time-consuming for very large networks.  It may therefore be 
advantageous to pass the previously generated .net file directly to the simulation program by 
using the netfile argument to the simulate_x command, as in  

simulate_ode({netfile=>"egfr_simple.net",t_end=>120,n_steps=>12}); 
The disadvantage of this method is that it does not permit the model parameters to be changed 
without directly editing the .net file (see Note 43). 
 
3.7. Additional Examples 
 

In this section, we discuss two example applications of BioNetGen.  In the first example, we 
illustrate how BioNetGen can be used to extend a conventional model so that it can be used to 
interpret fluorescent labeling experiments.  In the second example, we illustrate how BioNetGen 
can be used to produce a model for a system in which polymerization-like reactions are possible 
(e.g., a model for multivalent ligand-receptor interactions).  The graphical formalism upon which 
BioNetGen is based was designed with these types of systems in mind (25).  The structured 
objects (graphs) of BNGL allow the topological connectivity of (protein) complexes to be 
explicitly represented and tracked in a model. 
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3.7.1. Fluorescent Labeling 
 

Here we illustrate how BioNetGen can be used to extend an existing (non rule-based) 
reaction network. In some cases one needs to add a property that is passed from one species to 
another in a reaction network. For example, many experiments involve fluorescent labeling, in 
which the system is injected with fluorescently labeled proteins that can be monitored. 
Fluorescent species carry all the properties of non-fluorescent species, but can also be 
photobleached, losing fluorescence.  Given a reaction network of non-fluorescent species, the 
network that includes both fluorescent and non-fluorescent species nearly doubles in size. For 
larger networks, this expansion will be error-prone if done manually. Thus, it is desirable to be 
able to extend a model to enable tracking of fluorescent labels, and BioNetGen provides such a 
capability by allowing the definition of a mapping of component state labels from reactants to 
products. In addition to the application shown here, these mappings have been used to define 
carbon fate maps for most of the currently known reactions in metabolism (38). 

We consider a simple reaction network consisting of five species and described by four basic 
reactions (considering each direction as a separate reaction) 

 
The label chemistry we want to describe works as follows: fluorescence is passed from A to C in 
reaction 1 and from C to E in reaction 2.  This can be described by adding a component, which 
we will call ‘f’, to the molecules A, C, and E.  The f component in each molecule may be in 
either the ‘off’ or the ‘on’ state, as shown in the molecule types definitions of Listing 2.  We 
then define rules for mapping the state of the f component between A and C (see rule 1 in 
reaction rules block of Listing 2) and between C and D (see rule 2 in reaction rules 
block of Listing 2) using the ‘%’ character followed by a string to tag components (see Note 22).  
By not specifying the component state of f in the rules, we cause the component state to be 
mapped from the selected reactant molecule to the created product molecule.  This trick allows 
us to avoid writing separate rules for the labeled and unlabeled species. (When mapping 
components in this way the user should be careful that the allowed state label values of the 
components are the same or an error will be generated.) The defined observables track the 
amount of label associated with each of the molecules that can be labeled (A_f, C_f, and E_f) 
and the total amount of label present in the system (Tot_f).  The resulting network has nine 
species and 10 reactions. 

There are different ways in which labeled components may be introduced into the system.  
The simplest way would be to define an initial pool of labeled A molecules, i.e., define the 
species ‘A(f~on)’ to have non-zero initial concentration.  Here, we have chosen a somewhat 
more complex scenario in which the system is initially equilibrated without the label, followed 
by the introduction of an indicator molecule that adds label to A through a chemical reaction, the 
third rule in the input file.  Following equilibration with no indicator present, the indicator 
concentration is set to be a fraction of the total number of A molecules using the 
setConcentration command. Results of simulation of the network following equilibration 
and introduction of the indicator molecule are shown in Fig. 4.  The labeling reaction (rule 3) is 
fast compared to the other reactions, so that labeled A initially accumulates followed by a slower 
rise in the levels of labeled C and D molecules. 



 

 21 

 
3.7.2. Polymerization 
 

BNGL can be used to model the kinetics of molecular aggregates having different 
topological structures, such as chains, rings and trees.  Here, we present a simple model for the 
binding of a soluble multivalent ligand to a bivalent cell-surface receptor, such as a membrane-
bound antibody.  In this model, we consider a bivalent ligand with two identical binding sites 
(L(l,l)) and a bivalent receptor with two identical binding sites (R(r,r)).  The ligand may 
cross-link two receptors to form a dimeric receptor aggregate 
(R(r,r!1).L(l!1,l!2).R(r!2,r)), which can then interact with additional ligand via free 
receptor sites.  Ligand-receptor interaction can form a distribution of linear chains of alternating 
ligands and receptors (R(r,r!1).L(l!1,l!2).R(r!2,r!3).L(l!3,l!4).…).  Two 
simple rules, shown in Listing 3, provide an elementary model of bivalent ligand-bivalent 
receptor interaction under the assumptions that the length of a chain does not affect its reactivity 
and that rings do not form (see Note 44).  A third rule that allows the formation of rings of any 
size is shown in Listing 3, but this rule is commented out (see Note 45).  For a different example 
of polymerization in a biological context, see Note 46. 

The observables block in Listing 3 introduces a new syntax for using stoichiometry in the 
definition of observables, which is needed to track the aggregate size distribution in models that 
exhibit polymerization (see Note 47). 

Because chains can grow to any length, unless stopping criteria are specified, the process of 
iterative rule application initiated by a generate_network command will not terminate until 
the user runs out of patience or the computer runs out of memory.  We discuss here two methods 
of simulating a network that cannot be enumerated completely. 

The first method is to specify any of the restrictions described in Section 3.6.1 on the 
generate_network command, which will cause termination before all possible species and 
reactions have been generated.  The first pair of actions in Listing 3 shows how the 
max_stoich parameter can be used to limit the stoichiometry of complexes, producing in this 
case a network of 30 species and 340 reactions, which can be rapidly simulated using either the 
ODE or SSA methods.  The accuracy of simulations on artificially truncated networks is, 
however, not guaranteed and may depend strongly on the parameter values.  For the parameters 
shown in Listing 3, the population of clusters with more than about 5 receptors is small, and 
little error results from network truncation.  If the value of the cross-linking parameter, kp2, is 
increased by a factor of 10, however, the cluster size distribution generated by the truncated 
network becomes inaccurate.  The user must therefore be careful to check results for 
convergence, particularly when changing the parameter values over substantial ranges. 

The second method, which is specified by the second pair of actions in Listing 3, is to do a 
minimal initial round of network generation and then allow the network to be generated as new 
species become populated during a stochastic simulation.  The call to generate_network is 
required here in order to generate the reactions that can take place among the seed species; 
otherwise, an error will occur when a simulation command is invoked and there are no reactions 
in the network.  With max_iter set to 1 only reactions involving seed species are initially 
generated.  During simulation initiated with the simulate_ssa command, BioNetGen detects 
when a reaction event occurs that populates one or more species to which rules have not been 
previously applied and automatically expands the network through rule application.  This 
behavior is built into the simulate_ssa command and no additional parameters need to be 
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specified.  The performance of on-the-fly simulation is highly dependent on the system 
parameters and on the number of molecules being simulated.  Increasing the number of 
molecules while holding the concentrations fixed (accomplished by changing the parameter f) 
increases the size of the network that is generated by on-the-fly sampling.  Because the network 
generation involves the computationally expensive step of generating and comparing canonical 
labels (see Note 33), the simulation performance can become poor if one attempts to simulate 
on-the-fly under conditions that lead to the possible formation of more than about 103--104 
species.  Simulation of the dynamics of 300 receptors up to steady state takes about 30 CPU 
seconds on a MacBook Pro with the 2.4 GHz Intel Core Duo processor and generates a network 
of about 50 species and 350 reactions. 

In the near future, a third and more powerful option will be available for simulating large-
scale networks, such as those that arise when polymerization is possible or when some of the 
signaling molecules have high valence (see Note 48).  Work is currently underway to implement 
the discrete-event particle-based simulation method that has been recently developed, which 
extends Gillespie’s method to consider rules rather than individual reactions as event generators 
(30,31).  The main idea behind this method is that by tracking individual particles in a simulation 
rather than populations the need to explicitly enumerate the possible species and reactions is 
eliminated.  The computational scaling of a stochastic, event-driven simulation using the 
particle-based approach becomes effectively independent of network size and has moderate 
(logarithmic) scaling with the size of the rule set. This rule-based kinetic Monte Carlo method 
offers significantly better performance than the earlier particle-based event-driven algorithm 
used in the StochSim software, which uses a less efficient event sampling algorithm that 
produces a high fraction of nonreactive events (21). The planned incorporation of the rule-based 
kinetic Monte Carlo method will enable the efficient simulation of comprehensive models of 
signal transduction networks based on molecular interactions, and, we hope, greatly increase the 
power of predictive modeling of such systems. 

The plot in Fig. 5 shows simulation results for the number of receptors in trimers as a 
function of time (in seconds) from the ODE simulation of the truncated network (smooth line) 
and the SSA simulation with on-the-fly network generation (jagged line).  Following the initial 
equilibration period about 10-20% of the receptors are in trimers at any given time.  The total 
time required for network generation and simulation is comparable in the two cases, with 
network generation consuming the vast majority of the CPU time. 

 
3.8. Concluding Remarks 
 

The information provided here serves as both an introductory guide and reference resource 
for the modeler interested in using BioNetGen to develop and analyze rule-based models of 
biochemical systems.  Several applications of BioNetGen have been presented and discussed, but 
the rule-based modeling approach enabled by BioNetGen can be used for a much broader range 
of purposes. We strive to be responsive to the needs of the BioNetGen user community and 
encourage users to contact us to share their experiences, to request new capabilities and features, 
and to report bugs. The BioNetGen web site (http://bionetgen.org) has a wiki format to allow 
users to contribute information and models. Updates of the information presented here will be 
announced at the wiki site.  Rule-based modeling of biochemical networks is a rapidly evolving 
area of research and BioNetGen is therefore very much a work in progress, with new capabilities 
being added continually. 
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BioNetGen is an open-source project.  Although contributions of code are welcome, the main 
reason the source code is made available is so that users can see how the code works and can 
confirm that model specifications are being processed as expected. Because of the difficulties of 
checking the correctness of a chemical reaction network or a simulation result generated 
automatically from rules, key elements of BioNetGen have been coded independently multiple 
times and crosschecked.  After extensive testing, we are confident that the software is reliable.  
By following the guidance provided here, a modeler should be able to precisely use BNGL to 
obtain intended model specifications. 

In the future, we hope to see the BioNetGen framework evolve to enable community-driven 
development of comprehensive models for cellular regulatory systems.  The material 
components and interactions of a cellular regulatory system are typically too numerous and 
complicated for a single researcher to thoroughly document and capture faithfully in a model of 
comprehensive scope.  For example, nearly 200 proteins are documented to be involved in EGFR 
signaling in the NetPath database (http://netpath.org).  The ability to extend models through the 
composition of rules is a key factor that makes incremental construction of large-scale models a 
real possibility (8,27).  To take advantage of collective intelligence for the construction of large-
scale models, we are actively pursuing the following extensions of the BioNetGen framework: 1) 
implementation of methods capable of simulating models comprised of a large number of rules 
(30,31), 2) manipulation and encoding of BNGL using an XML-based format proposed as an 
extension of SBML (http://sbml.org) to better facilitate electronic exchange and storage of 
models, and 3) development of conventions and database-related tools for annotating models and 
model elements (e.g., linking of molecule names in a model specification to amino acid 
sequences and other information in standard databases).  However, for a long time to come, we 
foresee that a sound understanding of the material presented here will be useful for rule-based 
modeling with BioNetGen. 

 
4. Note s 
 

1. Users familiar with a command line interface on any of these systems should have no 
trouble following the instructions for using the software after reading this chapter.  Other 
users may find the RuleBuilder application, which provides a graphical user interface to 
BioNetGen, more accessible.  This application may be started by double-clicking on the 
RuleBuilder-beta-1.51.jar file in the RuleBuilder subdirectory of the BioNetGen 
distribution.  The RuleBuilder Getting Started Guide in the same directory explains use of 
the software.  Although this chapter focuses on the text-based interface, the basic 
concepts of BioNetGen modeling discussed here are essential for proper use of 
RuleBuilder. 

2. BioNetGen is invoked in a command shell using  
prompt> path/Perl2/BNG2.pl file.bngl 

3. The syntax of a line in the parameters block is  
[index] parameter [=] value 
where square brackets indicate optional elements, parameter is a string consisting of 
only alphanumeric characters plus the underscore character (‘_’) and containing at least 
one non-numeric character.  value may be either  a number in integer, decimal, or 
exponential notation or a formula involving numbers and other parameters in C-style 
math syntax. See Listing 1 for examples. 
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4. The size of the system being simulated can be scaled by changing the value of the 
parameter f in Listing 1. By scaling all of the initial populations and the volumes by this 
factor, the system size is scaled without changing the concentrations of any of the 
constituents.  For a deterministic simulation, the simulation time and the behavior of the 
system (e.g., the value of any observable divided by f) is independent of f.  For a 
stochastic simulation, however, the time required to carry out a simulation will be 
proportional to f, whereas the noise will be proportional to 1/sqrt(f). 

5. In current BNGL each component may have at most one associated state label, which 
may take on an arbitrary number of discrete values, specified as strings.  The state is thus 
a scalar variable that can be considered as an enum data type.  Future planned extensions 
of BNGL include nesting of components to allow a single component to have multiple 
associated states and binding sites. 

6. Names for all BioNetGen objects other than parameters, which includes molecules, 
components, state labels, bonds, labels, and observables may consist of alphanumeric 
characters and the underscore character (‘_’), but may not include the dash character (‘-’), 
which is sometimes used in the biological literature as part of protein or domain names. It 
is not an allowed character here because in some contexts it may be confused with the 
arithmetic minus operator. 

7. The syntax of a line in the molecule types block is  
[index] moleculeType 
where moleculeType has the syntax described in the text and illustrated in Listing 1. 

8. If the molecule types block is present, all molecules in the seed species block 
must match the type declarations in the molecule types block.  A molecule matches 
its type declaration if each of its declared components is present and each component 
state is a member of the declared set of possible states.  If the molecule types block 
is not present, then the seed species block serves a typing purpose.  The first instance 
of a molecule in the seed species block is taken to define the complete set of 
components in that molecule in the model, and only components that are assigned a state 
in the first occurrence may subsequently have defined states. For example, the Grb2 
molecule implicitly defined by the species Grb2(SH2,SH3) may not have any states 
assigned to SH2 or SH3 components. However, the species EGFR(L,CR1,Y1068~U) 
defines the Y1068 component of EGFR as one that has an associated state label, which 
has at least one allowed value, ‘U’, and potentially others to be defined later.  
Occurrences of additional allowed state labels may occur in the seed species block or 
in the reaction rules block, and in either case BioNetGen generates a warning 
message that additional allowed state values are being associated with the component. 

9. The syntax of a line in the seed species block is  
[index] species [initialPopulation] 
where species has the syntax for a BioNetGen species as described in the text and 
illustrated in the seed species block of Listing 1 and initialPopulation is a 
number or formula that specifies the amount of the species present at the start of the first 
simulation (default is zero). 

10. The amount of a chemical species may be specified to have a constant value by prefixing 
the chemical species name in the seed species block with a ‘$’ character, as follows: 
the expression ‘$EGF(R) 1’ would set the amount of free EGF in the system to 1.  This 
feature is useful for considering certain scenarios. 

11. The syntax of a line in the observables block is  
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[index] [observableType] observableName pattern1[, pattern2]… 
where observableType is either Molecules or Species (defaults to Molecule if 
omitted)  observableName is a valid name for a BioNetGen observable, and each 
pattern is a valid BioNetGen pattern. 

12. Recall that bond names are arbitrary and are used only to identify the bond endpoints.  
Thus, the bond names used in a pattern do not affect the resulting matches. 

13. The ‘?’ wildcard can also be used in state matching, but leaving component state out of a 
match is more commonly achieved by omitting the state label altogether.  For example 
the patterns ‘EGFR(Y1068)’ and ‘EGFR(Y1068~?)’ are equivalent, i.e., generate the 
same matches. 

14. For each pattern, selected matches to species in the model of Listing 1 are listed with the 
image of the pattern elements shown in bold. (These are not meant to be exhaustive, just 
illustrative.) Note that some chemical species are matched multiple times by a given 
pattern.  

a. EGFR() matches 
EGFR(CR1,L,Y1068~U),EGF(R!1).EGFR(CR1,L!1,Y1068~U), 
EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~U).EGFR(CR1!3,L!2,Y1
068~U), and  
EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~U).EGFR(CR1!3,L!2,Y1
068~U) 

b. EGF(R) matches EGF(R) 
c. EGFR(CR1!+) matches 

EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~U).EGFR(CR1!3,L!2,Y1
068~U), and 
EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P).EGFR(CR1!3,L!2,Y1
068~U) 

d. EGFR(Y1068~P!?) matches 
EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P).EGFR(CR1!3,L!2,Y1
068~U), and 
EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P!4).EGFR(CR1!3,L!2,
Y1068~U).Grb2(SH2!4,SH3) 

e. Grb2(SH2,SH3!1).Sos1(PxxP!1) matches 
Grb2(SH2,SH3!1).Sos1(PxxP!1) 

f. EGFR(Y1068!1).Grb2(SH2!1,SH3!2).Sos1(PxxP!2) matches 
EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P!4).EGFR(CR1!3,L!2,
Y1068~U).Grb2(SH2!4,SH3!5).Sos1(PxxP!5) 

15. The sum corresponding to an observable is defined explicitly in the .net file that is 
generated by BioNetGen when an input file is processed.  These sums are contained in 
the groups block of the .net file (see Note 28). 

16. When an observable is defined by two or more patterns, the associated functions are 
computed as follows.  For an observable of the Molecules type, the observable is a sum 
of the observables defined by each individual pattern in the set.  For an observable of the 
Species type, the observable is an unweighted sum of the populations of chemical species 
matched by any of the patterns in the set.  Multiple patterns can be useful for specifying 
observables that are functions of multiple sites on a molecule, e.g., the total 
phosphorylation level of a protein that can be phosphorylated at multiple sites. 

17. The .gdat and .cdat files produced by BioNetGen simulation commands are ASCII text 
files that list the time courses of observables and concentrations respectively in a tabular 
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format.  The first line of each file is a header beginning with a ‘#’ character, followed by 
a whitespace-separated list of strings identifying the contents of each column.  The first 
column is “time” in both .gdat and .cdat formats.  In a .gdat file the remaining columns 
list the observable names corresponding to each column.  In the .cdat file, the remaining 
columns list the index of the species concentration corresponding to each column. 

18. The syntax of a line in the reaction rules block is  
[index] rPattern1 [+rpattern2] … arrow pPattern1 [+pPattern2] … 
  rateLaw1[,rateLaw2] [command1] … 
where each Pattern is a valid BioNetGen pattern, arrow is one of ‘->’ or ‘<->’, each 
rateLaw is a parameter or a rate law function (see Note 20),  and commands have the 
syntax described in Section 3.5.7. 

19. If a component of molecule appears in a reactant pattern, the corresponding molecule in 
the product pattern, if it is not deleted, must include that component.  Failure to include 
the full set of components referenced by the reactant pattern will produce an error.  Thus, 
the rule ‘A(a)->A(b) kab’ produces an error, even if the A molecule has both 
components a and b. 

20. Other rate laws are invoked by using one of the keywords for the allowed rate law types 
followed by a comma-separated list of numerical values or formulas in parentheses.  As 
of this writing, the three recognized rate law types are ‘Ele’, ‘Sat’, and ‘MM’.  The 

formula for the Ele rate law is , where M is the molecularity of the 

reaction (i.e., the number of reactants) and xi is the population level of the ith reactant. 
This rate law type is specified by default when only a numerical value or a formula is 
given following the product patterns in a rule, as described in Section 3.5.  The current 
version of BioNetGen supports a few non-elementary rate law formulas, primarily to 
allow simulation of models from the literature that incorporate these rate laws. The 

formula for the Sat rate law is , where x1 is the 

population level of the reactant matching the first reactant pattern in the rule. Note that 
 and Km are the usual Michaelis-Menten parameters if M=2 (47) and that 

these parameters should be specified in consistent units. An example of a rule that uses 
this rate law is  
  Prot(Y~U)+Kinase(aloopY~P)->Prot(Y~P)+Kinase(aloopY~P) Sat(kcat,Km)   
The formula for the MM rate law is , where 

.  Note that this rate law type is 

applicable only if M=2.  The MM rate law type is the same as the Sat rate law type when 
M=2 except that x1 is replaced by x1’ to account for the amount of “substrate” bound to 
“enzyme.” In the near future it will be possible to define rate laws using arbitrary 
mathematical formulas. 

21. A single-site rate law characterizes the rate of a reaction that involves the formation or 
dissolution of a single bond.  In some cases, a reaction can occur in multiple ways that 
are indistinguishable.  In these cases, the single-site rate law needs to be multiplied by a 
statistical factor to obtain the appropriate observable rate of the reaction.  For example, if 
an antibody with two identical binding sites associates with a monovalent hapten, then 
there are two indistinguishable ways that this reaction could occur.  If the single-site rate 
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constant is k, then the observable rate at which the reaction occurs is 2 k [IgG] [hapten], 
where [IgG] is the concentration of bivalent antibody, [hapten] is the concentration of 
monovalent hapten, and the statistical factor of 2 accounts for the fact that hapten can add 
to either of the two sites on the antibody.  BioNetGen in generating or simulating a 
reaction network automatically accounts for such statistical factors under the assumption 
that the rate law associated with a rule applies to a single-site reaction.  A modeler should 
therefore be careful to always specify a single-site rate constant when writing a rule.  
Likewise, BioNetGen automatically adds a symmetry factor of 1/2 to account for 
reactions such as A + A -> product(s), a factor of 1/6 to account for reactions such as A + 
A + A -> product(s), etc.   In general, when assigning a rate constant to the elementary 
rate law of a rule, one should assign the constant appropriate for a reaction of the form 
A+B-> product(s) where in this reaction there is a unique path from the reactants to 
product(s).  BioNetGen will automatically correct rates of reactions for statistical and 
symmetry factors.  This feature is important because these factors often vary from 
reaction to reaction within a class of reactions defined by a single rule (28). 

22. Any component in a reaction rule may be tagged by adding the ‘%’ character followed by 
the tag name.  The scope of a tag is local to the rule in which it appears.  

23. The application of rule 1 of Listing 1 to the species {EGF(R), 
EGFR(L,CR1,Y1068~U), EGFR(L,CR1,Y1068~P), 
EGFR(L,CR1,Y1068~P!1).Grb2(SH2!1,SH3)}, produces the following reactions: 
  EGF(R)+EGFR(L,CR1,Y1068~U)->EGF(R!1).EGFR(L!1,CR1,Y1068~U) kp1 
  EGF(R)+EGFR(L,CR1,Y1068~P)->EGF(R!1).EGFR(L!1,CR1,Y1068~P) kp1 
  EGF(R)+EGFR(L,CR1,Y1068~P!1).Grb2(SH2!1,SH3)->\ 
    EGF(R!2).EGFR(L!2,CR1,Y1068~P!1).Grb2(SH2!1,SH3) kp1 
where the images of the reactant patterns are shown in bold and the reaction centers are 
underlined.  The rate law for an individual reaction has the same format as a rate law in a 
reaction rule (see Note 18). 

24. The scope of a bond name is restricted to the pattern in which it appears.  Bond names are 
not used in establishing the correspondence between reactant and product patterns.  Thus, 
the rule ‘A(a!1).B(b!1~U) -> A(a!2).B(b!2~P)’ has no effect on the bond 
between A and B even though in the specification the name of the bond changes between 
the reactant and product sides.  Similarly, in the expression ‘A(a!1).B(b!1) + 
C(c!1).D(d!1)’ the fact that both bonds have the same name has no consequence. 

25. Internally, BioNetGen represents all reactions generated by rules as uni-directional and 
maintains this representation when generating a .net file or exporting networks to SBML 
and MATLAB M-file formats. 

26. Consider the action of the following two rules on the initial species 
‘A(a1!1,a2!2).B(b1!1,b2!2)’, which describes a complex between A and B 
molecules connected by two bonds.  Both rules break the bond between the a1 
component of A and the b1 component of B. The first rule, ‘A(a1!1).B(b1!1) -> 
A(a1)+B(b1)’, has a molecularity of two in the products, and thus does not apply to this 
complex because breaking the bond still leaves the complex held together by the bond 
between a2 and b2.  The second rule, ‘A(a1!1).B(b1!1) -> A(a1).B(b1)’, does 
not require dissociation of the resulting complex and generates the reaction 
‘A(a1!1,a2!2).B(b1!1,b2!2) -> A(a1,a2!1).B(b1,b2!1)’. 

27. Describing dephosphorylation as a first order reaction involving only the substrate 
assumes that the responsible enzyme, a phosphatase is constitutively active and is present 
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at an excess and unchanging level.  Dephosphoryation reactions have been handled this 
way (see, e.g., (33)) because the identities of the phosphatases acting on a particular 
substrate are often unknown. 

28. The .net file produced by BioNetGen is a BNGL file with the three additional blocks 
species, reactions, and groups, which contain the species, reactions, and 
observable function definitions that result from network generation.  The syntax for the 
species block is identical to that of the seed species block in the BNGL file.  It 
contains a complete list of the species in the network and their concentrations at the 
current time.  The syntax for each line in the reactions block is 
  index reactantList productList [multiplicity*]rateLaw 
where the reactantList and productList are comma-separated lists referring to 
species by index,  multiplicity is an optional factor multiplying the rate law, and 
rateLaw is either a single parameter (for an elementary type) or one of the additional 
types (see Note 20).  An example of a reaction entry is  

   1 1,7 8 2*kp1 
which specifies that species 1 and 7 undergo a bimolecular association to produce species 
8 with an elementary rate law governed by the rate constant 2*kp1. The syntax for each 
line in the observables block is 

   index groupName speciesList 
where the speciesList is a comma-separated list of species indices, each element of 
which has the form [weight*]speciesIndex.  An example of a sum definition for 
observable 6 of the example model in Listing 1 is  
  6 Sos1_act 13,16,18,20,22,2*23 
In the sum, the population level of Species 23 has a weight of two, whereas the 
population levels of all other species have the default weight of one. 

29. The two products are  
 EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~U).EGFR(CR1!3,L!2,Y1068~P) 
 EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P).EGFR(CR1!3,L!2,Y1068~U), which 
are isomorphic, as can be verified by switching the order of the two EGF and two EGFR 
molecules and renumbering bonds 1 and 2. 

30. A correction is required for rules that are symmetric (26).  BioNetGen automatically 
detects rule symmetry generates reactions with the correct multiplicity. Consider the 
symmetric rule ‘A(a) + A(a) -> A(a!1).A(a!1) k’ applied to the set of species 
{A(a,Y~U), A(a,Y~P)}.  The following reactions will be generated 
  A(a,Y~U) + A(a,Y~U) -> A(a!1,Y~U).A(a!1,Y~U) 0.5*k 
 A(a,Y~U) + A(a,Y~P) -> A(a!1,Y~U).A(a!1,Y~P) k 
 A(a,Y~P) + A(a,Y~P) -> A(a!1,Y~P).A(a!1,Y~P) 0.5*k 
where the first and third reactions are symmetric and thus have a multiplicity of !, for the 
reason discussed above in Note 21.  The second reaction has a multiplicity of 1 because 
there is only one way that a bond may be added to join the two A molecules. 

31. This would not be the case if EGFR had another binding partner that could bind through 
the CR1 domain, such as another member of the ErbB family of receptors to which 
EGFR belongs.  Consider a simplified example of the protein ‘A(Y~U,b)’, where the b 
component is a binding site that can bind either to the b site of a kinase B or to the b site 
of a kinase-dead mutant of B called Bi.  The rule ‘A(Y~U,b!+)-> A(Y~P,b!+)’ would 
not capture the described mechanism because both A(Y~U,b!1).B(b!1) and 
A(Y~U,b!1).Bi(b!1) would generate phosphorylation reactions under action of this 
rule.  The most obvious way to address this problem is to explicitly specify that B must 
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be present for the rule to apply, as in ‘A(Y~U,b!1).B(b!1)-> 
A(Y~P,b!1).B(b!1)’. 

32. Such counters can prevent the steady_state flag of simulate_ode from reaching 
steady state because the counter species will increase linearly in time if the steady-state 
concentration of the A-containing species is nonzero.  If one wishes to preserve possible 
steady state behavior, the concentration of the Trash species should be fixed by 
prepending a ‘$’ character to its declaration in the seed species block (see Note 10).  
In other words, Trash should be declared as a seed species with fixed value using the line 
‘$Trash 0’ in the seed species block. 

33. Species are compared during network generation by generating a string label for the 
species from a canonical ordering of the molecules, components, and edges (26). A 
canonical ordering is one that guarantees that two graphs will generate the same label if 
and only if they are isomorphic (48). In this way, the problem of determining graph 
isomorphism is reduced to string comparison and testing a species found in a new 
reaction for isomorphism with existing species is reduced to looking up its label in a hash 
table.  For labeled graphs, such as those used in BioNetGen to represent species, the 
problem of canonical ordering is trivial if all labels in the graph are unique (lexical 
sorting will suffice).  More powerful methods are needed if there are multiple 
occurrences of nodes with identical labels (49). There are three different methods that 
BioNetGen can use to generate canonical labels and test species for isomorphism.  To 
specify a canonical labeling method the command 
‘setOption(“SpeciesLabel”,method);’. is placed anywhere in the BNGL file 
outside of the input blocks and before the first action command.  In this command 
method is Auto, HNauty, or Quasi. Use of this command is optional unless overriding 
the default method, which is Auto. The default method used by BioNetGen for 
generating canonical labels is called ‘Auto’, which works by generating a quasi-canonical 
label that includes all information about the Species except the bonds, for which only the 
bond order of each Component is listed.  These quasi-canonical labels are quick to 
generate, but they cannot distinguish all nonisomorphic species.  Thus, any two species 
that share a quasi-canonical label must be further checked for isomorphism directly, for 
which BioNetGen uses a variant of the Ullmann algorithm (50). This method is always 
correct, but may be very slow if the number of identical Molecules or Components in a 
complex is greater than a handful, because it requires checking of a large number of 
permutations.  A second exact method called ‘HNauty’ is available that gives more robust 
performance when species are formed that involve substantial numbers of repeated 
elements.  HNauty is a generalization of the Nauty algorithm of McKay (49) developed 
specifically to handle graphs representing species in BioNetGen (51).  HNauty is slower 
than Auto when most of the species in a network have low stoichiometry, but is 
sometimes required to simulate networks in which substantial oligomerization occurs.  In 
some cases, such as when oligomers are restricted to linear chains, the quasi-canonical 
strings used as a filter by the Auto method turn out to be canonical.  If that is the case, the 
‘Quasi’ method can be used to turn off the additional isomorphism check for species that 
match an existing quasi-canonical label, which can significantly accelerate network 
generation.  This method should only be used when the user can confirm that the quasi-
canonical labels are in fact canonical; otherwise, failure to resolve non-identical species 
will result in unpredictable behavior. 
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34. If a rule set implies a large or unbounded network and a user attempts to generate the 
network, BioNetGen may not complete execution in a reasonable amount of time.  In 
such cases a user has several options: 1) Restrict network generation using arguments to 
generate_network, as discussed in Section 3.6.  2) Use the ‘print_iter=>1’ option 
of the generate network command to cause BioNetGen to dump an intermediate .net 
file for each iteration of rule application and inspect the resulting .net file for indications 
of runaway polymerization that may be unintended.  3) Run a stochastic simulation with 
on-the-fly network generation (see Section 3.7.2). 4) Wait for the network-free 
simulation engine(s) to become available (see Fig. 2).  5) Use the macro model reduction 
module for BioNetGen, which uses the algorithms described in (52--54) to reduce the 
size of the network that needs to be generated to calculate the specified observables.  The 
module is included in BioNetGen distributions 2.0.47 and later, and is invoked using the 
command ‘MacroBNG2.pl --macro file.bngl’. 

35. The prefix command sets the basename to be the value of its argument, whereas the 
suffix command appends its argument to the basename.  For example, the command 
‘prefix=>test’ would set the basename to test, and the command ‘suffix=>test’ 
would append ‘_test’ to the basename. The scope of changes to the basename is local to 
the command in which the prefix or suffix commands appear. The basename for 
subsequent commands reverts to the basename of the file unless overriden by additional 
commands. The sole exception to this is the readFile action, which sets the global 
basename to either the value of the prefix command, if present, or to the basename of 
the file command. 

36. In practice, a modeler should be careful to check by trial and error that t_end is 
sufficiently large to reach steady state. Recall that BioNetGen expects model parameters 
and variables to have consistent units, so times specified in simulation commands (e.g., 
by assigning a value to the t_end parameter) should be given in units consistent with 
those of rate constants, which have units of inverse seconds in all examples presented 
here. 

37. In addition to reporting simulation output at evenly spaced intervals, as specified using 
the t_end and n_steps parameters, BioNetGen can also report results at any set of 
times specified in the sample_times array.  When this option is used, values of the 
t_end and n_steps parameters should not be specified.  An example of non-uniform 
time sampling specified in this way is the command 
  simulate_ode({sample_times=>[1,10,100]}); 
which will result in observables and species concentrations being reported at t=0 (the 
start time), 1, 10, and 100. 

38. Rule-based networks tend to be sparse, that is, the vast majority of elements of the 
Jacobian matrix are zero (the elements of this matrix are , where  is 
the ODE describing the kinetics of species i).  This may not be the case for networks 
involving extensive oligomerization.  Empirically, we have found that networks with 
more than a few hundred species tend to be accelerated by the use of sparse methods, 
with major gains occurring for networks of thousands to tens of thousands of species.  
The largest network that has been simulated with BioNetGen has about 50,000 species 
and 100,000 reactions.  Above that point, the 2 gigabytes of memory addressable on 32 
bit architectures is exceeded.  

39. The setConcentration command has the syntax 
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setConcentration(species,value) 
where species is a valid BioNetGen species specification (see Section 3.3) and value 
is a number or formula. 

40. Note that if the initial concentration of a species is set to a parameter or a formula, 
changing the value of the parameter or of parameters in the formula using the 
setParameter after the first simulation is run will not affect the species concentrations, 
which are overwritten following the completion of the simulation. 

41. It is straightforward to write scripts that utilize these commands to automate such tasks as 
parameter scans or averaging multiple stochastic simulations.  The Perl script 
scan_var.pl, which is provided in the Perl2 directory of the BioNetGen distrbution, 
provides a simple example that can be used for scanning the value of a single parameter 
and could be easily extended to perform more complex actions. 

42. A .net file with the name ‘basename.net’ is automatically generated prior to execution 
of any simulation command and is read by the run_network program, which is 
executed as a separate process.  If a .net file with the same name already exists, it is 
overwritten.  If multiple simulation commands are given in the same input file, it may be 
useful to use a different basename for each (using either the prefix or suffix 
commands), so that the input network to each simulation can be inspected later for 
information and debugging purposes.  In the example shown in Listing 1, the first 
simulate_ode command produces the file ‘egfr_simple_equil.net’, the second 
simulate_ode command produces the file ‘egfr_simple.net’, and the 
simulate_ssa produces the file ‘egfr_simple_ssa.net’. 

43. BioNetGen’s simulation engine, Network, has a command line interface that can be used 
directly, bypassing BNG2.pl altogether.  Details of this interface are provided in the 
source code of run_network.c, which is located in the Network2 subdirectory of the 
distribution.  A summary is provided by running the appropriate run_network 
executable in the bin directory of the distribution.  In addition, BNG2.pl outputs the 
exact command used to execute run_network following the tag ‘full_command:’.  

44. Note that a nearly identical network of species and reactions can be generated by the 
single rule ‘R(r)+L(r)<-> R(r!1).L(r!1) kp1,km1’, where the difference is that 
in the single-rule network all reactions will have the same rate constant.  This difference 
is important physically, because ligand that is bound to receptor is restricted to diffuse on 
the surface of the cell, whereas free ligand diffuses freely in three dimensions.  Although 
restriction to the cell surface decrease the diffusion constant of the ligand, the effective 
concentration of receptor binding sites greatly increases resulting in a strong 
enhancement of the ligand-receptor binding rate (55). 

45. Rule 3 of Listing 3 is the simplest ring closure rule that can be specified for this system, 
and permits the formation of all possible rings in this system, including a monomeric ring 
in which a single receptor binds the same ligand twice.  To exclude this possibility, which 
may be sterically unfavorable, one could extend the rule to read 
‘L(l!1).R(r!1,r).L(l) <-> L(l!1).R(r!1,r!2).L(l!2) kp3,km3’, which 
forces the ring closure to involve a ligand molecule other than the one to which the R 
molecule is bound. It is also possible to restrict the range of chain sizes that can undergo 
ring closure by explicitly including all of the molecules that form the ring, or by using a 
combination of include_reactants and exclude_reactants commands.  For 
example, the adding the commands ‘include_reactants(1,R.R)’ and 
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‘exclude_reactants(1,R.R.R.R)’ to either ring closure rule would only allow the 
formation of rings containing two or three R molecules.  This is desirable from a 
biophysical perspective because the rate of ring closure may depend on the distance 
between the two endpoints of the chain that are being connected (56).  In the future it will 
be possible to specify such relationships in a single rule using rate laws that depend on 
the specific properties of a species matched by a pattern in a rule. 

46. Actin, which is one of the major components of the cytoskeleton, forms branched 
structures that play a critical role in many cellular processes including motility (57).  A 
simple model for the formation of branched actin structures is given by the definition of 
an actin molecule as ‘A(b,p,br)’, where the components b, p, and br represent the 
barbed end, the pointed end and the branching sites of actin respectively, a rule for chain 
elongation ‘A(b)+A(p)<-> A(b!1).A(p!1) kp1,km1’, and a rule for chain 
branching ‘A(br)+A(p)<-> A(br!1).A(p!1) kp2,km2’. The first rule generates 
linear filaments of actin, which become branched through the action of the second rule.  
Filaments may be extended either through the addition of monomers or by combination 
with another filament. 

47. The basic syntax is ‘molecule op number’, where molecule is a molecule name, op 
is one of the comparison operators ‘==’, ‘<’, ‘>’, ‘<=’, or ‘>=’, and number is a non-
negative integer.  This allows the stoichiometry of a single molecule type within a 
complex to be selected.  If the observable is of type Molecules (the default), the 
observable will reflect the total number of molecules in species matching the selected 
stoichiometry.  If the observable is of type Species, the observable will reflect the total 
population of species matching the selected stoichiometry.  The current syntax allows 
stoichiometry of only a single molecule type to be considered at a time. 

48. In our experience the combinatorial explosion becomes a major bottleneck to generating 
and simulating networks in any realistic model that considers more than a handful of 
components. A recent model of EGFR signaling by Danos et al. (27) provides an 
example.  The model considers 13 proteins, a small subset of the proteins that are active 
in EGFR signaling, and is comprised of 70 rules that generate about 1023 species.  Other 
rule-based models of growth factor signaling have produced similar eye-popping 
numbers (58,59).  Even models that consider a few components may exhibit 
polymerization. For example, a simple model of Shp2 regulation constructed in 
BioNetGen involves only two molecule types, and yet must be truncated because the 
combination of binding and enzyme-substrate interactions generates infinite chains (36).  
For the trivalent ligand bivalent receptor problem described in Yang et al. (31) there is a 
phase transition in which nearly all of the receptors coalesce into a single giant aggregate, 
which makes accurate truncation of the network effectively impossible. 
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Tables 
 
Table 1.  Syntax and parameters for BioNetGen actions. Scalar types are int, 0/1 (a boolean), 
string, and float.  Multi-valued parameters may be either arrays or hashes. 
 
Action/parametera Type Description Default 
generate_network Generate species and reactions through iterative application 

of rules to seed species 
  max_agg int Maximum number of molecules in one species 1e99 
  max_iter int Maximum number of iterations of rule application 100 
  max_stoich hash Maximum number of molecules of specified type in 

one species 
- 

  overwrite 0/1 Overwrite existing .net file 0 (off) 
  print_iter 0/1 Print .net file after each iteration 0 
  prefixb string Set basenamed of .net file to string basename 

of .bngl 
file 

  suffixb string Append _string to basename of .net file - 
simulate_ode / simulate_ssa Simulate current model/network 
  t_end float End time for simulation required 
  t_start float Start time for simulation 0 
  n_steps int Number of times after t=0 at which to report 

concentrations/observables 
1 

  sample_times array Times at which to report concentrations/observables 
(supercedes t_end, n_steps) 

- 

  netfile string Name of .net file used for simulation - 
  atolc float Absolute error tolerance for ODE’s 1e-8 
  rtolc float Relative error tolerance for ODE’s 1e-8 
  steady_statec 0/1 Perform steady state check on species concentrations 0 
  sparsec 0/1 Use sparse Jacobian / iterative solver (GMRES) in 

CVODE 
0 

readFile Read a .bngl or a .net file 
  file string Name of file to read required 
writeNET / writeSBML / 
writeMfile 

Write current model/network in specified format 

setConcentration(species,value) Set concentration of species to value.  
setParameter(parameter,value) Set parameter to value. 
saveConcentrations() Store current species concentrations. 
resetConcentratons() Restore species concentrations to value at point of last 

saveConcentrations command. 
 
a General syntax is 
action({scal=>val,array=>[x1,x2,…],hash=>{key1=>val1,key2=>val2,…},…}); 
b The prefix and suffix parameters can be used with any command that writes output  to a file. 
c These parameters only apply to simulate_ode. 
d See Note 35. 
 



 

 38 

Listings 
 
Listing 1.  Elements of the BioNetGen input file egfr_simple.bngl. Block names are shown 
in bold, and reaction centers are underlined for clarity in the reaction rules block. 
 
begin parameters 
  NA 6.02e23 # Avogadro's number (molecues/mol) 
  f  1       # Fraction of the cell to simulate 
  Vo f*1.0e-10 # Extracellular volume=1/cell_density (L) 
  V  f*3.0e-12 # Cytoplasmic volume (L) 
  # Inital amount of ligand (20 nM) 
  EGF_init 20*1e-9*NA*Vo # convert to copies per cell 
  # Initial amounts of cellular components (copies per cell) 
  EGFR_init     f*1.8e5 
  Grb2_init     f*1.5e5 
  Sos1_init     f*6.2e4 
  # Rate constants 
  # Divide by NA*V to convert bimolecular rate constants 
  # from /M/sec to /(molecule/cell)/sec 
  kp1 3.0e6/(NA*V) # ligand-monomer binding 
  km1 0.06         # ligand-monomer dissociation 
  kp2 1.0e7/(NA*V) # aggregation of bound monomers 
  km2 0.1          # dissociation of bound monomers 
  kp3 0.5          # dimer transphosphorylation 
  km3 4.505        # dimer dephosphorylation 
  kp4 1.5e6/(NA*V) # binding of Grb2 to receptor 
  km4 0.05         # dissociation of Grb2 from receptor 
  kp5 1.0e7/(NA*V) # binding of Grb2 to Sos1 
  km5 0.06         # dissociation of Grb2 from Sos1 
  deg 0.01         # degradation of receptor dimers 
end parameters 
 
begin molecule types 
  EGF(R) 
  EGFR(L,CR1,Y1068~U~P) 
  Grb2(SH2,SH3) 
  Sos1(PxxP) 
  Trash() 
end  molecule types 
 
begin seed species 
  EGF(R)              0 
  EGFR(L,CR1,Y1068~U) EGFR_init 
  Grb2(SH2,SH3)       Grb2_init 
  Sos1(PxxP)          Sos1_init 
end seed species 
 
begin observables 
  1 Molecules  EGFR_tot  EGFR() 
  2 Molecules  Lig_free  EGF(R) 
  3 Species    Dim       EGFR(CR1!+) 
  4 Molecules  RP  EGFR(Y1068~P!?) 
  # Cytosolic Grb2-Sos1 
  5 Molecules  Grb2Sos1  Grb2(SH2,SH3!1).Sos1(PxxP!1) 
  6 Molecules  Sos1_act  EGFR(Y1068!1).Grb2(SH2!1,SH3!2).Sos1(PxxP!2) 
end observables 
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Listing 1 (continued) 
 
begin reaction rules 
  # Ligand-receptor binding 
  1 EGFR(L,CR1) + EGF(R) <-> EGFR(L!1,CR1).EGF(R!1) kp1, km1 
  # Receptor-aggregation  
  2 EGFR(L!+,CR1) + EGFR(L!+,CR1) <-> EGFR(L!+,CR1!1).EGFR(L!+,CR1!1) kp2,km2 
  # Transphosphorylation of EGFR by RTK 
  3 EGFR(CR1!+,Y1068~U) -> EGFR(CR1!+,Y1068~P)  kp3 
  # Dephosphorylation 
  4 EGFR(Y1068~P) -> EGFR(Y1068~U) km3 
  # Grb2 binding to pY1068 
  5 EGFR(Y1068~P) + Grb2(SH2) <-> EGFR(Y1068~P!1).Grb2(SH2!1) kp4,km4 
  # Grb2 binding to Sos1 
  6 Grb2(SH3) + Sos1(PxxP) <-> Grb2(SH3!1).Sos1(PxxP!1) kp5,km5 
  # Receptor dimer internalization/degradation 
  7 EGF(R!1).EGF(R!2).EGFR(L!1,CR1!3).EGFR(L!2,CR1!3) -> Trash() deg \ 
        DeleteMolecules 
end reaction rules 
 
#actions 
 
generate_network({overwrite=>1}); 
# Equilibration 
simulate_ode({suffix=>equil,t_end=>100000,n_steps=>10,sparse=>1,\ 
    steady_state=>1}); 
setConcentration("EGF(R)","EGF_init"); 
saveConcentrations(); # Saves concentrations for future reset 
 
# Kinetics  
writeSBML({}); 
simulate_ode({t_end=>120,n_steps=>120}); 
resetConcentrations(); # reverts to saved Concentrations 
simulate_ssa({suffix=>ssa,t_end=>120,n_steps=>120}); 
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Listing 2.  BioNetGen input file for the fluorescent labeling example (see Section 3.7.1). 
 
begin parameters 
NA 6.02e23 # Avogadro's number (molecues/mol) 
f  0.1       # Fraction of the cell to simulate 
Vo f*1.0e-10 # Extracellular volume=1/cell_density (L) 
V  f*3.0e-12 # Cytoplasmic volume (L) 
# Initial concentrations (copies per cell) 
A_tot 10000   
B_tot  8000  
D_tot 50000 
# Rate constants : Divide by NA*V to convert bimolecular rate constants 
# from /M/sec to /(molecule/cell)/sec 
kpAB 3.0e6/(NA*V)  
kmAB 0.06          
kpCD 1.0e6/(NA*V)  
kmCD 0.06          
kpI  1.0e7/(NA*V)  
kmI   0.1 
end parameters 
 
begin molecule types 
A(f~off~on) 
B() 
C(f~off~on) 
D() 
E(f~off~on) 
I() 
end molecule types 
 
begin seed species 
A(f~off) A_tot 
B()      B_tot 
C(f~off) 0 
D()      D_tot 
E(f~off) 0 
I()      0 
end seed species 
 
begin reaction rules 
1 A(f%1) + B() <-> C(f%1) kpAB, kmAB 
2 C(f%1) + D() <-> E(f%1) kpCD, kmCD 
3 A(f~off) + I <-> A(f~on) kpI, kmI 
end reaction rules 
 
begin observables 
Molecules A_f A(f~on) 
Molecules C_f C(f~on) 
Molecules E_f E(f~on) 
Molecules Tot_f A(f~on)� ,C(f~on),E(f~on) 
end observables 
 
generate_network({overwrite=>1}); 
# Equilibrate 
simulate_ode({suffix=>equil,t_end=>10000,n_steps=>10,steady_state=>1}); 
# Add indicator 
setConcentration("I","A_tot/10"); 
simulate_ode({t_end=>200,n_steps=>50}); 
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Listing 3.  BioNetGen input file for binding of bivalent ligand to bivalent receptor (see Section 
3.7.2). 
 
setOption(SpeciesLabel,HNauty); 
begin parameters 
NA 6.02e23 # Avogadro's number (molecues/mol) 
f  0.001       # Fraction of the cell to simulate 
Vo f*1.0e-9 # Extracellular volume=1/cell_density (L) 
V  f*3.0e-12 # Cytoplasmic volume (L) 
L0  1e-9*NA*Vo # Conc. in Molar -> copies per cell 
R0  f*3e5 
kp1 1e5/(NA*V) 
km1 0.1 
kp2 1e6/(NA*V) 
km2 0.1 
kp3 30 
km3 0.1 
end parameters 
begin molecule types 
 R(r,r) 
 L(l,l) 
end molecule types 
 
begin reaction rules 
# Ligand addition 
1 R(r) + L(l,l) <-> R(r!1).L(l!1,l) kp1,km1 
# Chain elongation 
2 R(r) + L(l,l!+) <-> R(r!1).L(l!1,l!+) kp2,km2 
# Ring closure 
#3 R(r).L(l) <-> R(r!1).L(l!1) kp3,km3 
end reaction rules 
 
begin seed species 
 R(r,r) R0 
 L(l,l) L0 
end seed species 
 
begin observables 
Species FreeL L(l,l) 
Dimers  R==2 
Trimers  R==3 
4mers   R==4 
5mers   R==5 
6mers   R==6 
7mers   R==7 
8mers   R==8 
9mers   R==9 
10mers  R==10 
gt10mers R>10 
end observables 
 
# Simulation of a truncated network 
generate_network({overwrite=>1,max_stoich=>{R=>10,L=>10}}); 
simulate_ode({t_end=>1, n_steps=>20}); 
# Simulation on-the-fly 
generate_network({overwrite=>1,max_iter=>1}); 
simulate_ssa({t_end=>50,n_steps=>20}); 
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Figures 
 

 
 
Figure 1. Rule-based modeling concepts and their encoding in BioNetGen Language (BNGL). 
(A) The basic building blocks are molecules, which are structured objects, comprised of 
components that represent functional elements of proteins and may have associated states that 
represent covalent modifications or conformations. Molecules may be assembled into complexes 
through bonds that link components of different molecules. (B) Patterns select particular 
attributes of molecules in species (shown in bold).  The pattern shown here selects molecules of 
B with a free b1 binding site regardless of the phosphorylation or binding status of the b2 
component. (C) Rules specify the biochemical transformations that can take place in the system 
and may be used to build up a network of species and reactions (see Section 3.5 for a complete 
description of rule syntax).  The reaction center (components undergoing direct modification) is 
underlined. (This is shown for clarity and is not part of BioNetGen syntax.) Starting with the 
seed species, rules are applied to generate new reactions and species by mapping reactant 
patterns onto species and applying the specified transformation(s).  Species generated by new 
reactions may be acted on by other rules to generate new reactions and species, and the process 
continues until no new reactions are found or some other stopping criteria are satisfied. 
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Figure 2.  Software architecture of BioNetGen.  The BioNetGen language (BNGL) file specifies 
a rule-based model that can be processed by the BioNetGen core version 2 (BNG2) in a variety 
of ways.  Iterative application of rules to an initial set of species can generate a reaction network 
that is passed to one of the simulation modules through the .net format or exported to formats 
(SBML, MATLAB) that can be read by other programs.  In the near future, an XML-based 
encoding will be used to pass model specifications among additional software components, 
including a particle-based simulator called NFsim (“network-free” simulator) (Sneddon, M., 
Faeder, J. and Emonet, T., private communication).  Simulation modules produce .cdat and .gdat 
files, which record the time courses of species concentrations and observables respectively. The 
dashed arrow connecting the SSA module and BNG2 represents the on-the-fly network 
generation capability available for stochastic simulations. 
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Figure 3.  Plotting BioNetGen simulation data in PhiBPlot.  Data from up to two different files 
may be plotted simultaneously.  Here, data for the Sos1_act observable from the ODE and SSA 
simulations is overlaid, showing the effects of fluctuations in the stochastic simulation. 
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Figure 4.  Plot of simulation results obtained from BioNetGen input file for the fluorescent 
labeling example shown in Listing 2 made using PhiBPlot (black and white rendition of color 
output). The plot shows time courses of the observables from the second simulate_ode 
command in the actions block of Listing 2. 
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Figure 5.  Plot of simulation results obtained from BioNetGen input file for the bivalent ligand 
bivalent receptor binding model shown in Listing 3 made using PhiBPlot.  Smooth solid line is 
the curve obtained from the simulate_ode command; jagged line with circles shows results 
from the simulate_ssa command. 
 


