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1. Introduction to Rule-based Modeling  

1.1. Modeling goals and challenges 
 
What do we expect from a model?   

• A model should incorporate details about quantities that can be measured and 
perturbed in experiments, so that predictions are testable.   

• Parameters of a model should be independent of system behavior (i.e., they 
should have a physical rather than phenomenological basis),  

• Analysis of a model should provide insights and guide experimentation by 
illuminating the logical consequences of knowledge and assumptions about the 
mechanistic details of a system, such as the interacting proteins, binding sites, 
enzymes responsible for post-translational modifications, and sites of 
modification in a system.   

Signal-transduction systems generally involve post-translational modifications (such as 
phosphorylation), protein-protein interactions and the assembly of heterogeneous protein 
complexes.  A signaling protein generally contains multiple binding sites as well as 
multiple sites subject to post-translational modifications (Yang, 2005).  This multiplicity 
of sites gives rise to combinatorial complexity: the number of possible combinations of 
protein modifications and proteins in complexes grows exponentially with the number of 
functional sites in a system, and hundreds to thousands of chemical species may be 
generated by the interactions among only a few proteins (Morton-Firth, 1998; Kohn, 
1999; Endy and Brent, 2001; Goldstein et al., 2002). 

Consider, for example, the receptor tyrosine kinase EGFR.  At least nine tyrosines 
in EGFR are phosphorylated during signaling (Jorissen, 2003).  There are 29=512 
different phosphoforms of EGFR and 512*513/2= 131,328 distinct combinations of these 
phosphoforms for a dimer of EGFR.  The actual number of phosphorylation states of 
EGFR relevant for signaling in particular contexts may be much lower.  However, to 
investigate the dynamics of phosphorylation of individual residues without bias, a 
modeler may want to consider the whole spectrum of possible phosphorylation states.   

1.2. Conventional approach to model specification  
 
The conventional approach to modeling a biochemical system is to draw a 

diagram depicting the chemical species and reactions in the system and then translate this 
scheme manually into a set of equations, such as a system of coupled ordinary differential 
equations (ODEs).  A reaction scheme is an organized layout of a list of reactions that is 
based on a modeler’s knowledge and assumptions about the system.  Schemes for signal-
transduction systems, which can be quite large (Oda et al., 2005), are based mostly on 
knowledge and assumptions about protein-protein interactions.  A drawback of a reaction 
scheme is that it obscures the underlying protein-protein interactions, which are not 
explicitly represented.  Still, a scheme is far easier to interpret than the corresponding 
equations, and the readability of a reaction scheme can be improved by using graphical 
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annotation designed with protein-protein interactions in mind (Kitano et al., 2005).  In 
some cases, a reaction scheme can serve the purpose of model specification well. 
 Although the conventional approach to model specification is problematic for 
signal-transduction systems, which are marked by combinatorial complexity, it is 
nevertheless the approach most often used to specify models for these systems, but at a 
cost.  Models derived in this way are invariably based on assumptions, which may be 
difficult to justify, that limit the chemical species and reactions considered to a fraction of 
those possible.  An example is the model of Kholodenko et al. (1999) for EGFR 
signaling, which has been extended by a number of researchers (Schoeberl et al., 2002; 
Resat et al., 2003; Hatakeyama et al., 2003; Maly et al., 2004).  This model is based on 
mechanistic assumptions that result in a selective focus on only a fraction of the protein 
complexes and phosphorylation states that could potentially arise from the protein-protein 
interactions considered in the model.  For example, one assumption is that ligand-induced 
dimers of EGFR are unable to dissociate when receptors are phosphorylated, which 
seems unlikely.  This assumption arises from a description of signaling events as an 
ordered pathway, which is consistent with the way this system is presented in typical 
diagrammatic interaction maps but inconsistent with rapidly reversible reactions and 
multiple branching possibilities.  Lifting this and other assumptions causes a 
combinatorial explosion in the number of possible reactions and species (Blinov et al., 
2006b), which makes manual model specification impractical.  
 

2. BNGL in a nutshell 

2.1. Organization of BNGL file 
 
The model specification consists of four blocks, each beginning with a line containing 
begin <blockname> and ending with a line containing end <blockname>.  Block names 
are 

parameters 
molecules (optional) 
species or seed species 
reaction rules  
observables 

They may appear in any order, although, because of the dependencies the above order is 
the most logical. The model specification is followed by a set of commands that operate 
on the model.  Basic commands are 

generate_network(); 
writeSBML(); 
simulate_ode({t_end=>NUMBER,n_steps=>NUMBER}); 
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2.2. The simplest BNGL model: a single reaction 
 
Consider the example of a single reaction of two species R and L forming a complex RL, 
R + L -> RL, with initial conditions R(0)=R0, L(0)=L0. In BNGL, we write it as   
 
begin parameters 
  R0   100 
  L0   500 
  RL0   0 
  kon  0.01 
  koff  0.1 
end parameters 
 
begin species 
  R   R0     
  L   L0 
  RL  RL0 
end species 
 
begin reaction rules 
   R + L <-> RL kon, koff 
end reaction rules 
 
begin observables 
  Molecules R_unbound  R 
  Molecules L_unbound  L 
  Molecules R_complex_L  RL 
  Molecules R_total  R RL 
  Molecules L_total  L RL 
end observables 
 
generate_network(); 
writeSBML(); 
simulate_ode({t_end=>50,n_steps=>20}); 
 
Let us comment on some notations in the model: 

• Parameters include initial concentrations and kinetic rate constants and are 
introduced without any units. 

• Reaction rules specify a reversible mass-action reaction with parameters kon and 
koff. 

• Observables define sums over the concentrations of species, which correspond to 
the quantities that are measured in typical biological experiments, such as total 
amount of unbound ligands (L_unbound) and ligands attached to receptors (RL). 

• The first column of an observable declaration indicates the type of observable 
(molecules), the next column is the name of the observable (it is used for 
displaying the results), and the remaining entries are species (separated by spaces) 
contributing to the observable. 

• Molecules indicate a weighted sum over the species. In this example it is just a 
sum of concentrations. 
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• The generate_network(); command directs BioNetGen to generate a complete 
reaction network, which consists in this case of 3 species R, L, RL and 1 
reversible reaction.  

• The create_sbml(); command directs BioNetGen to save the reaction network 
in an SBML file. 

• simulate_ode({t_end=>50,n_steps=>20}); directs BioNetGen to run a 
timecourse of 50 timeunits (consistent with your units used in parameters section) 
and report concentrations of all species and observables at 20 evenly-distributed 
time points.  

• Please note that result of simulation R_total and L_total should be conserved 
over the time course. 

2.3. BNGL use to track composition and binding of species 
 
The example above can be modified to reflect the fact that RL is a complex of R and L. 
For that, we have to introduce a binding site on R for L: R(l), and a binding site on L for 
R: L(r). Names of binding sites are arbitrary, but just for convenience we denote binding 
site by the same letter as its binding partner. The complex RL will be represented directly 
as R bound to L through a chemical bond between their respective binding sites: 
R(l!1).L(r!1). Here the dot ‘.’ denotes association of molecules into a complex, and ‘1’ is 
the identifier of the chemical bond between r and l. Modifications to the old file are 
shown in red. 
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Figure 1 Model of simple ligand-receptor interaction. (a) Kohn Molecular Interaction map (MIM). 
(b) BioNetGen rule. 
 
 
begin parameters 
  R0   100 
  L0   500 
  kon  0.01 
  koff  0.1 
end parameters 
 
begin seed species 
  R(l)   R0     
  L(r)   L0 
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end seed species 
 
begin reaction rules 
   R(l) + L(r) <-> R(l!1).L(r!1) kon, koff 
end reaction rules 
 
begin observables 
  Molecules R_total  R() 
  Molecules L_total  L() 
  Molecules L_unbound  L(r) 
  Molecules R_unbound  R(l) 
  Molecules L_bound  L(r!+) 
  Molecules R_bound  R(l!+) 
  Molecules R_complex_L  R().L() 
  Molecules R_complex_L  R(l!1).L(r!1) 
end observables 
 
generate_network(); 
writeSBML(); 
simulate_ode({t_end=>50,n_steps=>20}); 
 
 
Let us comment on some notations in the model: 

• Binding sites introduced inside Species block. 
• Instead of defining a separate species for the complex, the complex is expressed 

based on its components in reaction rules block. 
• Entries in the observable block can be patterns that may select multiple species, 

for example: 
o R() selects all species containing a receptor, i.e. R(l) and R(l!1).L(r!1) 
o L(r) and R(l) indicate unbound forms of L and R respectively. 
o R(l!+) and L(r!+) indicate unbound forms of L and R respectively. 
o R().L() and  R(l!1).L(r!1) indicate a complex of L and R 
o R().L(), R(l!1).L(r!1), R(l!+), L(r!+) in this particular example select the 

single species R(l!1).L(r!1). However, as we’ll see later, this will change 
as the model will be extended. 

The reaction network generated by BioNetGen looks as follows: 
 
begin species 
    1 R(l)          R0 
    2 L(r)          L0 
    3 L(r!1).R(l!1) 0 
end species 
begin reactions 
    1 1,2 3 kon 
    2 3 1,2 koff 
end reactions 
begin groups 
    1 R_total               1,3 
    2 L_total               2,3 
    3 L_unbound            2 
    4 R_unbound            1 
    5 L_bound              3 
    6 R_bound              3 
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    7 RL                   3 
    8 RL                   3 
end groups 
 

In reactions block and group block numbers refer to species numbers. In reactions 
block reactants are separated from products by a space, and individual reactants and 
products are separated by comma, so in the expanded form the reactions block should 
look like 

1 L(r) + R(l) ->   L(r!1).R(l!1)  kon 
2 L(r!1).R(l!1)  ->   L(r) + R(l)  koff 

The block groups include species that contribute to the observable. Thus, R_total 
includes two species R(l) and L(r!1).R(l!1), Ltotal includes two species L(r) and 
L(r!1).R(l!1), etc.   

 

2.4. Introducing rules that generate multiple reactions and new species 
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Figure 2 Model of independent ligand-receptor and protein-receptor interactions interaction.  
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Let us assume that protein A can bind R independently of L.  The example above can be 
modified to include this feature. For that, we have to introduce: 

1. An additional binding site on R for A: R(l,a),  
2. A new protein A with a binding site for R: A(r).  
3. New kinetic parameters: initial value of A A0 and rates for binding of A to R: 

kAon and kAoff. 
4. A reaction rule that specifies that A binds to R independently on the presence of a 

ligand L. 
Modifications to the old file are shown in red. 
 
begin parameters 
  R0   100 
  L0   500 
  A0   100 
  kon  0.01 
  koff  0.1 
  kAon 0.01 
  kAoff 0.1 
end parameters 
 
begin seed species 
  R(l,a)   R0     
  L(r)   L0 
  A(r)   A0 
end seed species 
 
begin reaction rules 
   R(l) + L(r) <-> R(l!1).L(r!1) kon, koff 
   R(a) + A(r) <-> R(a!1).A(r!1) kAon, kAoff 
end reaction rules 
 
begin observables 
  Molecules Rtotal  R() 
  Molecules Ltotal  L() 
  Molecules Atotal  A() 
  Molecules L_unbound  L(r) 
  Molecules R_unbound  R(l,a) 
  Molecules A_unbound  A(r) 
  Molecules L_bound  L(r!+) 
  Molecules R_bound  R(l!+) 
  Molecules RLA  R().L().A() 
  Molecules RA1  A(r!+) 
  Molecules RA2  A(r!1).R(a!1) 
  Molecules RA3 A().R() 
end observables 
 
generate_network(); 
writeSBML(); 
simulate_ode({t_end=>50,n_steps=>20}); 
 
 
The full model derived from these specifications consists of 6 species and 4 bidirectional 
reactions, while the model specification itself includes only 3 species and 2 rules. 
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To generate the model, we start from 3 species S1=R(l,a), S2=L(r) , S3=A(r). 
Application of rule (1)   to S1 and S2 generates a new species S4= R(l!1,a).L(r!1).  
Application of rule (2) to S1 and S3 generates a species S5= R(l,a!1).A(r!1).  Now the 
rule (1) can be applied to the species S5 to generate a new species 
S6=R(l!1,a!2).L(r!1).A(r!2). Similarly, the rule (2) can be applied to the species S5 to 
generate the same new species S6. 
 
Let us comment on the model: 

• R() selects all species containing a receptor, 4 total; A() selects all species that 
contain A, 2 total; L() selects 3 species. They should be conserved during time 
course simulation. 

• L(r) and R(l,a) indicate unbound forms of L and R respectively, thus select a 
single species each. 

• If we would not change observable R_unbound from the last model and leave it 
as R(l), it would select only species unbound to a ligand, but potentially bound to 
A, thus it would be different from what we intend. 

• Observables RA1, RA2 and RA3 would select the same two species, a complex 
of A and R with and without ligand bound. 

 

2.5. Introducing multi-state molecules 
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Figure 3 Model of ligand-induced protein phosphorylation. (a) Kohn Molecular Interaction map 
(MIM). (b) BioNetGen rule for phosphorylation/dephosphorylation. 
 
Let us assume that R is the receptor tyrosine kinase, and A has a tyrosine subject to 
phosphorylation when A is bound to R. The example above can be modified to include 
this feature. For that, we have to introduce: 

1. an additional phosphosite on A for A: A(r,Y)  
2. Two potential states of Y: phosphorylated (P) and unphosphorylated (U). This is 

introduced as A(r,Y~U~P). This declaration is optional. 
3. Initial state of A A(r,Y~U) and additional rate constants kAp and kAdp. 
4. A rule specifying that Y can be phosphorylated only when A is bound to R-L 

complex. 
5. A rule specifying that A can be dephosphorylated at any time. 
 

Modifications to the old file are shown in red. 
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begin parameters 
  R0   100 
  L0   500 
  A0   100 
  kon  0.01 
  koff  0.1 
  kAon  0.01 
  kAoff  0.1 
  kAp 0.01 
  kAdp 0.1 
end parameters 
 
begin molecules 
   R(l,a) 
   L(r) 
   A(r,Y~U~P) 
end molecules 
 
begin seed species 
  R(l,a)   R0     
  L(r)   L0 
  A(r,Y~U)   A0 
end seed species 
 
begin reaction rules 
   R(l) + L(r) <-> R(l!1).L(r!1) kon,koff 
   R(a) + A(r) <-> R(a!1).A(r!1) kAon,kAoff 
   L().R().A(Y~U) -> L().R().A(Y~P)  kAp 
   A(Y~P) -> A(Y~U)   kAdp 
end reaction rules 
 
begin observables 
  Molecules A_P  A(Y~P) 
  Molecules A_unbound_P  A(r,Y~P) 
  Molecules A_bound_P  A(r!+,Y~P) 
  Molecules RLA_P  R().L().A(Y~P) 
end observables 
 
generate_network(); 
writeSBML(); 
simulate_ode({t_end=>50,n_steps=>20}); 
 
The full model consists of 9 species, 18 reactions (7 bidirectional reactions and 4 
unidirectional reactions), although there are only 3 species and 4 rules in the model 
specification. 
 
Species generated by the BioNetGen are L(r!1).R(a,l!1), A(Y~U,r!1).R(a!1,l),  
A(Y~U,r!1).L(r!2).R(a!1,l!2), A(Y~P,r!1).R(a!1,l), A(Y~P,r!1).L(r!2).R(a!1,l!2), 
A(Y~P,r). 
 
Let us comment on the model: 
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• A molecule block is an optional feature. If it is specified, it restricts potential 
states of Y to U and P. If this block is omitted, it will be generated by BioNetGen 
using reaction rules that introduce a new state P. 

• Observable A_P contains the union of species of observable A_unbound_P and 
A_bound_P. It can be used as a check either in the network file, or as during the 
timecourse. 

2.6. Introducing dimers 
 
Let us now assume that R must be ligand-induced dimerized in order to 
transphosphorylate A. The example above can be modified to include this feature. For 
that, we have to introduce: 

1. an additional receptor-binding site on R: R(l,r,a). 
2. A rule for ligand-induced binding: two ligand-bound receptors can dimerize, 

independently on A. 
3. Additional rate constants. 
4. Modification to phosphorylation rule, stating that A can be phosphorylated only 

in a receptor-dimer. 
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Modifications to the old file are shown in red. 
 
begin parameters 
  R0   100 
  L0   500 
  A0   100 
  kon  0.01 
  koff  0.1 
  kAon  0.01 
  kAoff  0.1 
  kAp 0.01 
  kAdp 0.1 
end parameters 
 
begin molecules 
   R(l,r,a) 
   L(r) 
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   A(r,Y~U~P) 
end molecules 
 
begin seed species 
  R(l,r,a)   R0     
  L(r)   L0 
  A(r,Y~U)   A0 
end seed species 
 
begin reaction rules 
   R(l) + L(r) <-> R(l!1).L(r!1)    kon,koff 
   R(a) + A(r) <-> R(a!1).A(r!1)    kAon,kAoff 
   R(l!1,r) + R(l!2,r) <-> R(l!1,r!3).R(l!2,r!3)   kon,koff 
   R().R().A(Y~U) -> R().R().A(Y~P)  kAp 
   A(Y~P) -> A(Y~U)   kAdp 
end reaction rules 
 
begin observables 
  Molecules R_Dim_M1  R().R() 
  Molecules R_Dim_M2  R(r!+) 
  Species R_Dim_S R(r!+) 
end observables 
 
generate_network(); 
writeSBML(); 
simulate_ode({t_end=>50,n_steps=>20}); 
 
Let us comment on the model: 

• The model now consists of 30 species and 137 reactions, so manual specification 
is already difficult. 

• In observables block we introduce a new type Species. Molecules is the more 
common type and indicates a weighted sum over the species selected by the 
pattern(s) defining a group, with the weight given by the number of matches 
found for each species. For example, a dimer containing two receptors R would 
have a weight of 2 in the observable. On the other hand, Species would count the 
dimer once. 

2.7. Investigating different protein-protein interaction mechanisms 
 
Please note the flexibility in the ligand-binding mechanism: 

• The rule written above allows a ligand to bind reversibly to any receptor. Thus, a 
ligand may dissociate from a receptor in a dimer, and dimers with one or no 
ligand may exist.  

• To prevent  ligand from dissociation in a dimer, one has to modify the ligand-
receptor binding rule as follows: 

R(l) + L(r) -> R(l!1).L(r!1)    kon 
R(l!1,r).L(r!1)  -> R(l,r) + L(r)   koff 

Note that the number of reactions decreases to 47, species to 15. 
• To prevent ligand from interacting with a receptor in a dimer, modify the first 

ligand-receptor binding rule as follows: 
R(l,r) + L(r) <-> R(l!1,r).L(r!1)    kon 
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We get 44 interactions among 15 specices. 
Please note the flexibility in the dimerization mechanism: 

• The rule as written above allows only ligand-bound receptors to dimerize and 
break a dimer. 

• If we expect that ligand can dissociate from a receptor in a dimer, we may allow 
any dimer to break-up. It is done by modifying a rule: 

R(l!1,r) + R(l!2,r) -> R(l!1,r!3).R(l!2,r!3)  kon 
R(r!3).R(r!3) -> R(r) + R(r) koff 

• Finally, we can request that even one ligand prevents dimer from break-up. 
R(l!1,r) + R(l!2,r) -> R(l!1,r!3).R(l!2,r!3)  kon 
R(l,r!3).R(l,r!3) -> R(l,r) + R(l,r)  koff 

Please note the flexibility in the mechanisms providing phosphorylation of A: 
• The rule as written above requires only two receptors in a complex for 

phosphorylation of A. The model does not prevent a ligand from 
binding/dissociation from the receptor, thus any dimer (with 1 or 2 ligands or 
without ligands at all) can phosphorylate A. 

• To restrict phosphorylation to L-R-R-L complexes, introduce 
L().L().R().R().A(Y~U) -> L().L().R().R().A(Y~P)  kAp 

• We may request that at least one ligand is required: 
R().R(l!1).A(Y~U) -> R().R(l!1).A(Y~P)  kAp 

• Finally, we can request which ligand is required by using explicit bonds: 
L(r!1).R().R(l!1,a!2).A(r!2,Y~U) -> 
L(r!1).R().R(l!1,a!2).A(r!2,Y~P)  kAp 

Exercise: Find the number of species and reactions for each of the above cases. 
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2.8. Changing parameters, network pre-equilibration and simulation 
 
Sometimes one needs to change parameters during simulation. This is done as follows: 
 
generate_network({overwrite=>1}); 
writeSBML({suffix=>"initial"}); 
writeNET({suffix=>"initial"}); 
 
# Equilibration 
setConcentration("L(r)",0); 
setParameter("L0",200); 
writeSBML({suffix=>"equil"}); 
writeNET({suffix=>"initial"}); 
simulate_ode({t_end=>100000,n_steps=>10,sparse=>1,steady_state=>1}); 
 
# Kinetics 
setConcentration("L(r)","L0"); 
writeSBML({suffix=>"kinetics"}); 
writeNET({suffix=>"initial"}); 
simulate_ode({suffix=>"kinetics",t_end=>120,n_steps=>120,atol=>1e-
8,rtol=>1e-8,sparse=>1}); 
 
Comments to the model: 

• The setParameter command sets a parameter value. 
• The setConcentration command sets the concentration of a particular species.  
• writeNET and writeSBML output files when user requests. The requested suffix is 

added to the file name. 
•  

Input and output files used by BioNetGen2.  
----------- 
|BNGL file|-> generate_network  -> NET file (contains generated 
-----------                           species, reactions, and observables) 
           -> simulate_{ode,ssa}-> CDAT file (concentrations of all species) 
                                   -> GDAT file (concentrations of observables) 
           -> writeSBML -> XML file (contains parameters, species, reactions, 
                                   and observables in SBML level 2format) 
 

2.9. Fluorescent labeling of molecules 
 
In some cases we have a reaction network and we add a property that is “carried 
through” the network. The simplest example is fluorescent labeling. 
 
begin parameters 
  A_fre     50 
  B_tot     100 
  D_tot     100 
  E_tot     100 
  k1f 1 
  k1r 1 
end parameters 
 
begin species 
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A()  A_fre 
B()  B_tot 
C()  0 
D()  D_tot 
E()  0 
end species 
 
begin reaction rules 
A() + B() <-> C() k1f, k1r 
C() + D() <-> E() k1f, k1r 
end reaction rules 
 
generate_network({overwrite=>1}); 
writeSBML({}); 
 
In this example, we start from the simplest reaction network A + B -> C, C + D -> E. 
Now we fluorescently label A. Fluorescence is passed to C and E, and each fluorescent 
species can be bleached. The reaction network for fluorescent network is doubled in size: 
it has now 8 species and 7 reactions versus 5 species and 2 reactions of the initial reaction 
network. For larger networks, this expansion will be error-prone if done by hands. 
BioNetGen provides a mechanism for introducing the labels. We introduce: 

• A label for each molecule that can be in fluorescent state: A(label~none~F), 
B(label~none~F), C(label~none~F). 

• Extend reactions by introducing labels 
• Introduce bleaching reactions. 

 
begin parameters 
  A_fre     50 
  A_flu     50 
  B_tot     100 
  D_tot     100 
  E_tot     100 
  k1f 1 
  k1r 1 
end parameters 
 
begin molecule types 
A(label~none~F) 
B() 
C(label~none~F) 
D() 
E(label~none~F) 
end molecule types 
 
begin species 
A(label~none)  A_fre 
A(label~F)     A_flu 
B()            B_tot 
C(label~none)  0 
D()            D_tot 
E(label~none)  0 
end species 
 
begin reaction rules 
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A(label%1) + B() <-> C(label%1) k1f, k1r 
C(label%1) + D() <-> E(label%1) k1f, k1r 
A(label~F) -> A(label~none)  k1f 
C(label~F) -> C(label~none)  k1f 
E(label~F) -> E(label~none)  k1f 
end reaction rules 
 
generate_network({overwrite=>1}); 
writeSBML({}); 
 
Another representation of the same process, even more compact: 
 
begin molecule types 
A(label~none~F,in_complex~none~C~E) 
B 
D 
end molecule types 
 
begin species 
A(label~none,in_complex~none)  A_fre 
A(label~F,in_complex~none)     A_flu 
B()            B_tot 
D()            D_tot 
end species 
 
begin reaction rules 
A(in_complex~none) + B <-> A(in_complex~C) k1f, k1r 
A(in_complex~C)    + D <-> A(in_complex~E) k1f, k1r 
A(label~F) -> A(label~none)  k1f 
end reaction rules 
 

2.10. Introducing potentially infinite chains 
 
Let us now describe chains and rings formed by interactions of bivalent ligands and 
bivalent receptors. There are three rules: ligand binding to a receptor, chain elongation 
and ring closure. The model generated by BioNetGen includes all chains and rings 
consisting of no more than 5 ligand and 5 receptors - a total of 20 species and 92 
interactions. 
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begin parameters 
 kp1 0.00001 
 km1 0.01 
 kp2 0.00001 
 km2 0.01 
 kp3 0.00001 
 km3 0.01 
 R0  100 
 L0  100 
end parameters 
 
begin seed species 
  R(r,r) R0 
  L(l,l) L0 
end seed species 
 
begin reaction rules 
R(r) + L(l,l) <-> R(r!1).L(l!1,l) kp1,km1   # Ligand addition 
R(r) + L(l,l!2) <-> R(r!1).L(l!1,l!2) kp2,km2   # Chain elongation 
R(r).L(l) <-> R(r!1).L(l!1) kp3,km3  # Ring closure 
end reaction rules 
 
generate_network({max_stoich=>{R=>5,L=>5}}); 
 
Let us comment on the model: 

• The model now consists of 20 species and 92 reactions. 
• You can add comments to the any place of the model. Everything on the line after 

# will be treated as a comment. 
• The generate_network command generates a complete or partial network of 

species, reactions, and observables through iterative application of the rules to the 
initially defined species. For each iteration, the entire set of rules is applied to all 
of the current species, potentially generating new reactions and species. New 
species generated at the current iteration are not added to the species list until all 
of the rules have been applied. The order in which the rules are specified in the 
input file therefore does not affect the species and reactions generated at each 
iteration, although it will affect the order in which they appear in the species and 
reaction lists. The parameters that affect the behavior of the generate_network 
command are given in the Table below.  

Table . Parameters for the generate_network command  

Name      Function       Default value 
------------------------------------------------------------ 
check_iso     Perform isomorphism check          1 (On) 
      for species that generate 
                   identical strings (keep this on  
                   unless you know what you're doing!) 
max_agg      Max. number of molecules            1e99 
      in one species 
max_iter     Max. number of rule applications      100       
max_stoich     Sets limit for number of molecules    Unset 
      of each specified type in one species  
                   (hash- see syntax above) 
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------------------------------------------------------------ 

Calling generate_network with the default parameters (no parameters specified) will 
cause network generation to proceed until the set of species and reactions no longer 
increases with further application of the rules. Some rules sets generate an infinite 
number of species and reactions, so in practice the maximum number of iterations is set 
to a finite value.  

2.11. simulate_ode(); 

The simulate_ode command is used to compute a timecourse of the network using 
ordinary differential equations to represent the average concentration of each species. The 
initial concentrations for species defined in the Species block are set to the declared 
values, while the concentrations of all species generated by generate_network are set to 
zero. simulate_ode calls the program Network, which provides an interface to the 
general-purpose ODE-solver CVODE. Adaptive implicit multi-step methods are used in 
the propagation to ensure efficient and accurate solution of the ODE's, which are usually 
stiff for networks with more than a few species. For very large systems (more than a few 
hundred species), then the sparse=>1 option is recommended. (We find that most systems 
are sparse.) With this option, CVODE uses sparse matrix methods to avoid storage of the 
n_species x n_species Jacobian matrix, which becomes prohibitive for systems with more 
than about 104 species, and the iterative GMRES algorithm to solve the required systems 
of linear equations. This enables networks with 103-104+ species to be simulated in a few 
minutes (or less) on standard processors, even with stiffness.  

Note that the parameter sample_times, which sets the times at which the concentrations 
are to be sampled, is an example of an array-valued parameter. Its argument is a comma-
separated list of numbers enclosed by square brackets. The command  

 simulate_ode({sample_times=>[1,10,100]}); 

would cause the species concentrations and observable values to be printed at times of 0, 
1, 10, and 100.  

Table . Parameters for the simulate_ode command. * indicates required parameters.  

Name      Function                   Default value 
------------------------------------------------------------ 
atol      Absolute error tolerance                 1e-8 
      for species concentrations 
n_steps      Number of intervals at                  1 
      which to report concentrations 
rtol      Relative error tolerance                   1e-8 
      for species concentrations 
sample_times     Times at which concentrations are           none 
                   reported (supercedes requirment for t_end) 
sparse      Turns on use of sparse matrix formation  0 (Off) 
      of the Jacobian and iterative solution  
                   of linear equations using GMRES.   
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                   Recommended for networks with more than 
      a few hundred species 
steady_state        Setting this to non-zero turns on check    0 (Off) 
      equilibration of species concentrations.   
                   Time course will stop when steady state 
      is reached.  If it is not reached in the  
                   allotted time the simulation will stop with 
      an error. 
t_start      Starting time for integration     0 
t_end*              End time for integration                   None 
------------------------------------------------------------ 
 

2.12. Customization for interactions with the Virtual Cell 
 
begin parameters 
  A0   1000 
  B0   500 
  kp1  0.46e-5 
  km1  1.0 
  p 100 
  d 5 
  t 10 
end parameters 
 
begin species 
  A(b,loc~Cyt)   A0     
  B(a,Y~U,loc~Cyt) B0 
end species 
 
begin reaction rules 
  A(b,loc~Cyt) + B(a,loc~Cyt) <-> A(b!1,loc~Cyt).B(a!1,loc~Cyt) kp1, 
km1 
  A(b!1).B(a!1,Y~U) -> A(b!1).B(a!1,Y~P)  p 
  B(Y~P,a,loc~Cyt) -> B(Y~P,a,loc~Nuc)  t 
  B(Y~P,loc~Nuc) -> B(Y~U,loc~Nuc)  p 
end reaction rules 
 
begin observables 
  Molecules A  A() 
  Molecules BP  B(a!?,Y~P) 
  Molecules BPC  B(a!?,Y~P,loc~Cyt) 
  Molecules BPN  B(a!?,Y~P,loc~Nuc) 
end observables 
 
generate_network(); 
writeSBML(); 
simulate_ode({t_end=>50,n_steps=>20}); 
 
#%VC% mergeReversibleReactions 
#%VC% speciesRenamePattern("\." , "_")  
#%VC% speciesRenamePattern("[\(,][a-zA-Z]\w*", "")  
#%VC% speciesRenamePattern("~|!\d*", "")  
#%VC% speciesRenamePattern("\(\)", "")  
#%VC% speciesRenamePattern("\)", "")   
#%VC% setUnit("all", "default")   
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#%VC% compartmentalizeSpecies("loc~Nuc", "Nucleus", "Cytoplasm")  
#%VC% compartmentalizeSpecies("loc~Cyt", "Cytoplasm", "") 
 

2.13. Rate laws 

Saturation and Michaelis-Menton rate laws can be invoked using one of the keywords for 
the allowed rate law types followed by a list of parameters in the parenthesis. The 
reaction  

S + E -> P + E Sat(kcat,Km) 

will have the rate law, rate= kcat*[S]*[E]/(Km + [S]). Note that the term in the 
denominator must appear first in the reaction rule.  

Also, note that the second species (in this case 'E') is optional on the left hand side of the 
reaction, such that the reaction  

E -> E + P Sat(kcat,Km) 

will have the rate law, rate= kcat*[E]/(Km + [E]).  

 
There is also a MM rate law type that gives the rate of the reaction corrected for the 
amount of S bound in the ES complex (solves quadratic formula for [S]free). This will 
give a closer approximation to the kinetics of the two elementary processes. The reaction  

S + E -> P + E MM(kcat,Km) 

will have the rate law, rate= kcat*[S]_free*[E]/(Km + [S]_free), where [S]_free is 
determined by  

[S]_free= 0.5*(([S]-Km-[E]) + ( ([S]-Km-[E])^2 + 4*Km*[S])^(1/2) ) 
 

2.14. Symmetric Reaction Rules 

This is a confusing subject, so let's consider a simple example.  
 
A(a) + A(a) -> A(a!1).A(a!1) kd 
 
If A has a second domain b~U~P, then BNG will generate the following reactions  
 
A(a,b~U) + A(a,b~U) -> ... 0.5*kd 
A(a,b~U) + A(a,b~P) -> ... kd 
A(a,b~P) + A(a,b~P) -> ... 0.5*kd 
 
Only the second reaction agrees with what you think it should be. The extra factor of 0.5 
is coming from the reaction kinetics, because the two reactants are the same, rather than 
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multiplicities. Consider two reactions A + B -> ... and A + A -> ... . If N_A= N_B, the 
number of collsions per second for the first reaction is proportional to N_A*N_B and for 
the second reaction is proportional to N_A*(N_A-1)/2. The factor of two that BNG is 
adding is due to the factor of two in the denominator. We decided to put this in the net 
file explicitly, because we assumed that most programs would not add the extra factor of 
two when computing the rates of symmetric reactions. If the factor of two is not added, 
then the total rate of reactions generated by the rule is not correct. In the example above, 
the rates of the reactions (without correction) would be  
 
A(a,b~U) + A(a,b~U) -> ... kd 
A(a,b~U) + A(a,b~P) -> ... kd 
A(a,b~P) + A(a,b~P) -> ... kd 

which neglects the fact that the symmetric reaction should occur at half the rate of the 
asymmetric one.  

2.15. simulate_ssa(); 

The simulate_ssa command is used to compute a timecourse of the network using the 
Gillespie direct algorithm for simulation of the stochastic master equations. When using 
this method to simulate a network, the species concentrations must be provided in 
number of molecules (per cell or per fraction of a cell) and the rate constants must be 
scaled accordingly. BNG2 does not currently provide any functions for performing unit 
conversions. The simulate_ssa interface is still incomplete and additional functionality 
will be added as needed. Currently, only one simulation run can be performed per 
command invocation.  

The main difference between the simulate_ssa command and standard Gillespie 
implementations, is that species and reactions can be generated by application of the 
reation rules on-the-fly. No special parameters are required to access this functionality. 
This is done by keeeping track of whether the reaction rules have been applied to each 
species. When a species to which the rules have not been applied becomes populated for 
the first time, the rules are applied to that species to generate new reactions and species 
and to update observables. This adaptive generation of the network is particularly useful 
for infinite networks. A simulation can be carried out adaptively by setting a small value 
for max_iter in the generate_network command prior to the simulate_ssa command, say 
1. The stochastic simulation will then map out the network over the course of the 
simulation.  

 Parameters for the simulate_ssa command are the same as for simulate_ode: n_steps, 
sample_times, t_start, t_end*      
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3. Rule-based modeling of complex signaling systems 

3.1. Epidermal Growth Factor Receptor Signaling 
 

 
 
 
 
For discussion of results, see Blinov ML et al., BioSystems 2006. 
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3.2. FceRI immunoreceptor signaling 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For discussion, see Faeder JR et al., JI 2003 

 
 
 
 
 
 
 
 
 



Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language 

 24

3.3. Actin filaments 
 

 

 
 
 
 
 

Pollard & Borisy, Cell 112 (2003) 
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