

Rule-Based Modeling of Biological Systems using
BioNetGen modeling language

Michael L. Blinov1, James R. Faeder2, William S. Hlavacek3

1 Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT
06030, USA

2 Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh,
PA 15260, USA

3 Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA

E-mail: blinov@uchc.edu

1. Introduction to Rule-based Modeling ... 2
1.1. Modeling goals and challenges... 2
1.2. Conventional approach to model specification... 2
2. BNGL in a nutshell ... 3
2.1. Organization of BNGL file ... 3
2.2. The simplest BNGL model: a single reaction... 4
2.3. BNGL use to track composition and binding of species..................................... 5
2.4. Introducing rules that generate multiple reactions and new species................... 7
2.5. Introducing multi-state molecules... 9
2.6. Introducing dimers .. 11
2.7. Investigating different protein-protein interaction mechanisms 12
2.8. Changing parameters, network pre-equilibration and simulation..................... 14
2.9. Fluorescent labeling of molecules .. 14
2.10. Introducing potentially infinite chains .. 16
2.11. simulate_ode(); ... 18
2.12. Customization for interactions with the Virtual Cell.................................... 19
2.13. Rate laws... 20
2.14. Symmetric Reaction Rules.. 20
2.15. simulate_ssa(); .. 21
3. Rule-based modeling of complex signaling systems .. 22
3.1. Epidermal Growth Factor Receptor Signaling.. 22
3.2. FceRI immunoreceptor signaling.. 23
3.3. Actin filaments.. 24
References... 25

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 2

1. Introduction to Rule-based Modeling

1.1. Modeling goals and challenges

What do we expect from a model?

• A model should incorporate details about quantities that can be measured and
perturbed in experiments, so that predictions are testable.

• Parameters of a model should be independent of system behavior (i.e., they
should have a physical rather than phenomenological basis),

• Analysis of a model should provide insights and guide experimentation by
illuminating the logical consequences of knowledge and assumptions about the
mechanistic details of a system, such as the interacting proteins, binding sites,
enzymes responsible for post-translational modifications, and sites of
modification in a system.

Signal-transduction systems generally involve post-translational modifications (such as
phosphorylation), protein-protein interactions and the assembly of heterogeneous protein
complexes. A signaling protein generally contains multiple binding sites as well as
multiple sites subject to post-translational modifications (Yang, 2005). This multiplicity
of sites gives rise to combinatorial complexity: the number of possible combinations of
protein modifications and proteins in complexes grows exponentially with the number of
functional sites in a system, and hundreds to thousands of chemical species may be
generated by the interactions among only a few proteins (Morton-Firth, 1998; Kohn,
1999; Endy and Brent, 2001; Goldstein et al., 2002).

Consider, for example, the receptor tyrosine kinase EGFR. At least nine tyrosines
in EGFR are phosphorylated during signaling (Jorissen, 2003). There are 29=512
different phosphoforms of EGFR and 512*513/2= 131,328 distinct combinations of these
phosphoforms for a dimer of EGFR. The actual number of phosphorylation states of
EGFR relevant for signaling in particular contexts may be much lower. However, to
investigate the dynamics of phosphorylation of individual residues without bias, a
modeler may want to consider the whole spectrum of possible phosphorylation states.

1.2. Conventional approach to model specification

The conventional approach to modeling a biochemical system is to draw a

diagram depicting the chemical species and reactions in the system and then translate this
scheme manually into a set of equations, such as a system of coupled ordinary differential
equations (ODEs). A reaction scheme is an organized layout of a list of reactions that is
based on a modeler’s knowledge and assumptions about the system. Schemes for signal-
transduction systems, which can be quite large (Oda et al., 2005), are based mostly on
knowledge and assumptions about protein-protein interactions. A drawback of a reaction
scheme is that it obscures the underlying protein-protein interactions, which are not
explicitly represented. Still, a scheme is far easier to interpret than the corresponding
equations, and the readability of a reaction scheme can be improved by using graphical

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 3

annotation designed with protein-protein interactions in mind (Kitano et al., 2005). In
some cases, a reaction scheme can serve the purpose of model specification well.
 Although the conventional approach to model specification is problematic for
signal-transduction systems, which are marked by combinatorial complexity, it is
nevertheless the approach most often used to specify models for these systems, but at a
cost. Models derived in this way are invariably based on assumptions, which may be
difficult to justify, that limit the chemical species and reactions considered to a fraction of
those possible. An example is the model of Kholodenko et al. (1999) for EGFR
signaling, which has been extended by a number of researchers (Schoeberl et al., 2002;
Resat et al., 2003; Hatakeyama et al., 2003; Maly et al., 2004). This model is based on
mechanistic assumptions that result in a selective focus on only a fraction of the protein
complexes and phosphorylation states that could potentially arise from the protein-protein
interactions considered in the model. For example, one assumption is that ligand-induced
dimers of EGFR are unable to dissociate when receptors are phosphorylated, which
seems unlikely. This assumption arises from a description of signaling events as an
ordered pathway, which is consistent with the way this system is presented in typical
diagrammatic interaction maps but inconsistent with rapidly reversible reactions and
multiple branching possibilities. Lifting this and other assumptions causes a
combinatorial explosion in the number of possible reactions and species (Blinov et al.,
2006b), which makes manual model specification impractical.

2. BNGL in a nutshell

2.1. Organization of BNGL file

The model specification consists of four blocks, each beginning with a line containing
begin <blockname> and ending with a line containing end <blockname>. Block names
are

parameters
molecules (optional)
species or seed species
reaction rules
observables

They may appear in any order, although, because of the dependencies the above order is
the most logical. The model specification is followed by a set of commands that operate
on the model. Basic commands are

generate_network();
writeSBML();
simulate_ode({t_end=>NUMBER,n_steps=>NUMBER});

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 4

2.2. The simplest BNGL model: a single reaction

Consider the example of a single reaction of two species R and L forming a complex RL,
R + L -> RL, with initial conditions R(0)=R0, L(0)=L0. In BNGL, we write it as

begin parameters
 R0 100
 L0 500
 RL0 0
 kon 0.01
 koff 0.1
end parameters

begin species
 R R0
 L L0
 RL RL0
end species

begin reaction rules
 R + L <-> RL kon, koff
end reaction rules

begin observables
 Molecules R_unbound R
 Molecules L_unbound L
 Molecules R_complex_L RL
 Molecules R_total R RL
 Molecules L_total L RL
end observables

generate_network();
writeSBML();
simulate_ode({t_end=>50,n_steps=>20});

Let us comment on some notations in the model:

• Parameters include initial concentrations and kinetic rate constants and are
introduced without any units.

• Reaction rules specify a reversible mass-action reaction with parameters kon and
koff.

• Observables define sums over the concentrations of species, which correspond to
the quantities that are measured in typical biological experiments, such as total
amount of unbound ligands (L_unbound) and ligands attached to receptors (RL).

• The first column of an observable declaration indicates the type of observable
(molecules), the next column is the name of the observable (it is used for
displaying the results), and the remaining entries are species (separated by spaces)
contributing to the observable.

• Molecules indicate a weighted sum over the species. In this example it is just a
sum of concentrations.

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 5

• The generate_network(); command directs BioNetGen to generate a complete
reaction network, which consists in this case of 3 species R, L, RL and 1
reversible reaction.

• The create_sbml(); command directs BioNetGen to save the reaction network
in an SBML file.

• simulate_ode({t_end=>50,n_steps=>20}); directs BioNetGen to run a
timecourse of 50 timeunits (consistent with your units used in parameters section)
and report concentrations of all species and observables at 20 evenly-distributed
time points.

• Please note that result of simulation R_total and L_total should be conserved
over the time course.

2.3. BNGL use to track composition and binding of species

The example above can be modified to reflect the fact that RL is a complex of R and L.
For that, we have to introduce a binding site on R for L: R(l), and a binding site on L for
R: L(r). Names of binding sites are arbitrary, but just for convenience we denote binding
site by the same letter as its binding partner. The complex RL will be represented directly
as R bound to L through a chemical bond between their respective binding sites:
R(l!1).L(r!1). Here the dot ‘.’ denotes association of molecules into a complex, and ‘1’ is
the identifier of the chemical bond between r and l. Modifications to the old file are
shown in red.

+

(a)
1

L

R

L

R

(b)

l

rL
R

l

r

Figure 1 Model of simple ligand-receptor interaction. (a) Kohn Molecular Interaction map (MIM).
(b) BioNetGen rule.

begin parameters
 R0 100
 L0 500
 kon 0.01
 koff 0.1
end parameters

begin seed species
 R(l) R0
 L(r) L0

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 6

end seed species

begin reaction rules
 R(l) + L(r) <-> R(l!1).L(r!1) kon, koff
end reaction rules

begin observables
 Molecules R_total R()
 Molecules L_total L()
 Molecules L_unbound L(r)
 Molecules R_unbound R(l)
 Molecules L_bound L(r!+)
 Molecules R_bound R(l!+)
 Molecules R_complex_L R().L()
 Molecules R_complex_L R(l!1).L(r!1)
end observables

generate_network();
writeSBML();
simulate_ode({t_end=>50,n_steps=>20});

Let us comment on some notations in the model:

• Binding sites introduced inside Species block.
• Instead of defining a separate species for the complex, the complex is expressed

based on its components in reaction rules block.
• Entries in the observable block can be patterns that may select multiple species,

for example:
o R() selects all species containing a receptor, i.e. R(l) and R(l!1).L(r!1)
o L(r) and R(l) indicate unbound forms of L and R respectively.
o R(l!+) and L(r!+) indicate unbound forms of L and R respectively.
o R().L() and R(l!1).L(r!1) indicate a complex of L and R
o R().L(), R(l!1).L(r!1), R(l!+), L(r!+) in this particular example select the

single species R(l!1).L(r!1). However, as we’ll see later, this will change
as the model will be extended.

The reaction network generated by BioNetGen looks as follows:

begin species
 1 R(l) R0
 2 L(r) L0
 3 L(r!1).R(l!1) 0
end species
begin reactions
 1 1,2 3 kon
 2 3 1,2 koff
end reactions
begin groups
 1 R_total 1,3
 2 L_total 2,3
 3 L_unbound 2
 4 R_unbound 1
 5 L_bound 3
 6 R_bound 3

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 7

 7 RL 3
 8 RL 3
end groups

In reactions block and group block numbers refer to species numbers. In reactions
block reactants are separated from products by a space, and individual reactants and
products are separated by comma, so in the expanded form the reactions block should
look like

1 L(r) + R(l) -> L(r!1).R(l!1) kon
2 L(r!1).R(l!1) -> L(r) + R(l) koff

The block groups include species that contribute to the observable. Thus, R_total
includes two species R(l) and L(r!1).R(l!1), Ltotal includes two species L(r) and
L(r!1).R(l!1), etc.

2.4. Introducing rules that generate multiple reactions and new species

+

(a)

1

L

R
L

R

(b) Initial species

l

rL

R

l

r
A +

1

R

a r

R

a r

A

(e) Specification of observables

2
a r

1

L

R
l

rA

A
2

a r

R
l A

Rule1: Ligand-receptor binding
R(l) + L(r) <-> R(l!1).L(r!1)

Rule2: Protein-receptor binding
R(a) + A(r) <-> R(a!1).A(r!1)

L

R
l

r

r
A

(c) Rules of interactions

(d) Rules application

+
1

L

Rl

rL

R

l

r

a

a a

+
2

a rr

A

1

L

Rl

r

1

L

Rl

r

a

New! New!

+
1

R

a r

R

a r

Al l

New!

r

2
a r

1

L

R
l

rA

A
2

a r

R
l A

r
A

Observable

Selected species

Observable

Selected species

Figure 2 Model of independent ligand-receptor and protein-receptor interactions interaction.

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 8

Let us assume that protein A can bind R independently of L. The example above can be
modified to include this feature. For that, we have to introduce:

1. An additional binding site on R for A: R(l,a),
2. A new protein A with a binding site for R: A(r).
3. New kinetic parameters: initial value of A A0 and rates for binding of A to R:

kAon and kAoff.
4. A reaction rule that specifies that A binds to R independently on the presence of a

ligand L.
Modifications to the old file are shown in red.

begin parameters
 R0 100
 L0 500
 A0 100
 kon 0.01
 koff 0.1
 kAon 0.01
 kAoff 0.1
end parameters

begin seed species
 R(l,a) R0
 L(r) L0
 A(r) A0
end seed species

begin reaction rules
 R(l) + L(r) <-> R(l!1).L(r!1) kon, koff
 R(a) + A(r) <-> R(a!1).A(r!1) kAon, kAoff
end reaction rules

begin observables
 Molecules Rtotal R()
 Molecules Ltotal L()
 Molecules Atotal A()
 Molecules L_unbound L(r)
 Molecules R_unbound R(l,a)
 Molecules A_unbound A(r)
 Molecules L_bound L(r!+)
 Molecules R_bound R(l!+)
 Molecules RLA R().L().A()
 Molecules RA1 A(r!+)
 Molecules RA2 A(r!1).R(a!1)
 Molecules RA3 A().R()
end observables

generate_network();
writeSBML();
simulate_ode({t_end=>50,n_steps=>20});

The full model derived from these specifications consists of 6 species and 4 bidirectional
reactions, while the model specification itself includes only 3 species and 2 rules.

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 9

To generate the model, we start from 3 species S1=R(l,a), S2=L(r) , S3=A(r).
Application of rule (1) to S1 and S2 generates a new species S4= R(l!1,a).L(r!1).
Application of rule (2) to S1 and S3 generates a species S5= R(l,a!1).A(r!1). Now the
rule (1) can be applied to the species S5 to generate a new species
S6=R(l!1,a!2).L(r!1).A(r!2). Similarly, the rule (2) can be applied to the species S5 to
generate the same new species S6.

Let us comment on the model:

• R() selects all species containing a receptor, 4 total; A() selects all species that
contain A, 2 total; L() selects 3 species. They should be conserved during time
course simulation.

• L(r) and R(l,a) indicate unbound forms of L and R respectively, thus select a
single species each.

• If we would not change observable R_unbound from the last model and leave it
as R(l), it would select only species unbound to a ligand, but potentially bound to
A, thus it would be different from what we intend.

• Observables RA1, RA2 and RA3 would select the same two species, a complex
of A and R with and without ligand bound.

2.5. Introducing multi-state molecules

(a) L

R

(b)

Y~PA
PY

Phosphatase

Y~U

Y~UY~P

L

R

Figure 3 Model of ligand-induced protein phosphorylation. (a) Kohn Molecular Interaction map
(MIM). (b) BioNetGen rule for phosphorylation/dephosphorylation.

Let us assume that R is the receptor tyrosine kinase, and A has a tyrosine subject to
phosphorylation when A is bound to R. The example above can be modified to include
this feature. For that, we have to introduce:

1. an additional phosphosite on A for A: A(r,Y)
2. Two potential states of Y: phosphorylated (P) and unphosphorylated (U). This is

introduced as A(r,Y~U~P). This declaration is optional.
3. Initial state of A A(r,Y~U) and additional rate constants kAp and kAdp.
4. A rule specifying that Y can be phosphorylated only when A is bound to R-L

complex.
5. A rule specifying that A can be dephosphorylated at any time.

Modifications to the old file are shown in red.

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 10

begin parameters
 R0 100
 L0 500
 A0 100
 kon 0.01
 koff 0.1
 kAon 0.01
 kAoff 0.1
 kAp 0.01
 kAdp 0.1
end parameters

begin molecules
 R(l,a)
 L(r)
 A(r,Y~U~P)
end molecules

begin seed species
 R(l,a) R0
 L(r) L0
 A(r,Y~U) A0
end seed species

begin reaction rules
 R(l) + L(r) <-> R(l!1).L(r!1) kon,koff
 R(a) + A(r) <-> R(a!1).A(r!1) kAon,kAoff
 L().R().A(Y~U) -> L().R().A(Y~P) kAp
 A(Y~P) -> A(Y~U) kAdp
end reaction rules

begin observables
 Molecules A_P A(Y~P)
 Molecules A_unbound_P A(r,Y~P)
 Molecules A_bound_P A(r!+,Y~P)
 Molecules RLA_P R().L().A(Y~P)
end observables

generate_network();
writeSBML();
simulate_ode({t_end=>50,n_steps=>20});

The full model consists of 9 species, 18 reactions (7 bidirectional reactions and 4
unidirectional reactions), although there are only 3 species and 4 rules in the model
specification.

Species generated by the BioNetGen are L(r!1).R(a,l!1), A(Y~U,r!1).R(a!1,l),
A(Y~U,r!1).L(r!2).R(a!1,l!2), A(Y~P,r!1).R(a!1,l), A(Y~P,r!1).L(r!2).R(a!1,l!2),
A(Y~P,r).

Let us comment on the model:

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 11

• A molecule block is an optional feature. If it is specified, it restricts potential
states of Y to U and P. If this block is omitted, it will be generated by BioNetGen
using reaction rules that introduce a new state P.

• Observable A_P contains the union of species of observable A_unbound_P and
A_bound_P. It can be used as a check either in the network file, or as during the
timecourse.

2.6. Introducing dimers

Let us now assume that R must be ligand-induced dimerized in order to
transphosphorylate A. The example above can be modified to include this feature. For
that, we have to introduce:

1. an additional receptor-binding site on R: R(l,r,a).
2. A rule for ligand-induced binding: two ligand-bound receptors can dimerize,

independently on A.
3. Additional rate constants.
4. Modification to phosphorylation rule, stating that A can be phosphorylated only

in a receptor-dimer.

(a) L

R

(d1) A is phosphorylated in a dimer

A
PY

Phosphatase

Y~PY~U

R

+
1

L

R

(b1) Ligand-binding independent
on dimerization

l

rL

R

l

r

1
Rl

r

2
Rl

r+

1
l
r

2
l
r3

(c1) Dimer formation is ligand-induced

Modifications to the old file are shown in red.

begin parameters
 R0 100
 L0 500
 A0 100
 kon 0.01
 koff 0.1
 kAon 0.01
 kAoff 0.1
 kAp 0.01
 kAdp 0.1
end parameters

begin molecules
 R(l,r,a)
 L(r)

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 12

 A(r,Y~U~P)
end molecules

begin seed species
 R(l,r,a) R0
 L(r) L0
 A(r,Y~U) A0
end seed species

begin reaction rules
 R(l) + L(r) <-> R(l!1).L(r!1) kon,koff
 R(a) + A(r) <-> R(a!1).A(r!1) kAon,kAoff
 R(l!1,r) + R(l!2,r) <-> R(l!1,r!3).R(l!2,r!3) kon,koff
 R().R().A(Y~U) -> R().R().A(Y~P) kAp
 A(Y~P) -> A(Y~U) kAdp
end reaction rules

begin observables
 Molecules R_Dim_M1 R().R()
 Molecules R_Dim_M2 R(r!+)
 Species R_Dim_S R(r!+)
end observables

generate_network();
writeSBML();
simulate_ode({t_end=>50,n_steps=>20});

Let us comment on the model:

• The model now consists of 30 species and 137 reactions, so manual specification
is already difficult.

• In observables block we introduce a new type Species. Molecules is the more
common type and indicates a weighted sum over the species selected by the
pattern(s) defining a group, with the weight given by the number of matches
found for each species. For example, a dimer containing two receptors R would
have a weight of 2 in the observable. On the other hand, Species would count the
dimer once.

2.7. Investigating different protein-protein interaction mechanisms

Please note the flexibility in the ligand-binding mechanism:

• The rule written above allows a ligand to bind reversibly to any receptor. Thus, a
ligand may dissociate from a receptor in a dimer, and dimers with one or no
ligand may exist.

• To prevent ligand from dissociation in a dimer, one has to modify the ligand-
receptor binding rule as follows:

R(l) + L(r) -> R(l!1).L(r!1) kon
R(l!1,r).L(r!1) -> R(l,r) + L(r) koff

Note that the number of reactions decreases to 47, species to 15.
• To prevent ligand from interacting with a receptor in a dimer, modify the first

ligand-receptor binding rule as follows:
R(l,r) + L(r) <-> R(l!1,r).L(r!1) kon

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 13

(a) L

R

(d1) A is phosphorylated in a dimer

A
PY

Phosphatase

Y~U

r

L

R

Y~PY~U

R

(c2) Phosphorylation requires 2 ligands L

Y~U

R

(d4) Phosphorylation requires at least one ligand

a

l
2

Y~P

L

R

r Y~P

R

a

l
2

+
1

L

R

(b1) Ligand-binding independent
on dimerization

l

rL

R

l

r

+1

L

Rl

r
L

R

l

r

rr

+
1

L

Rl

rL

R

l

r

+
1

L

Rl

rL

R

l

r

r r

(b2) Ligand binds to any receptor,
but can not dissociate in a dimer

(b3) Ligand can interact with
monomers only

1
l
r

2
l
r+

1
l
r

2
l
r3

(c2) Dimer can break-up only when
both ligands are present

r r2

(c2) Dimer break-up is spontaneous

r r+

r r2

(c4) Dimer can break-up only
after both ligand are gone.

r r+l l l l

1
Rl

r

2
Rl

r+

1
l
r

2
l
r3

(c1) Dimer formation is ligand-induced

Y~U

R
l

Y~P

R
l

(d5) Explicit requirement which ligand is required

Y~U

R
l

Y~P

R
l

(d3) Phosphorylation requires two ligands

l l

We get 44 interactions among 15 specices.
Please note the flexibility in the dimerization mechanism:

• The rule as written above allows only ligand-bound receptors to dimerize and
break a dimer.

• If we expect that ligand can dissociate from a receptor in a dimer, we may allow
any dimer to break-up. It is done by modifying a rule:

R(l!1,r) + R(l!2,r) -> R(l!1,r!3).R(l!2,r!3) kon
R(r!3).R(r!3) -> R(r) + R(r) koff

• Finally, we can request that even one ligand prevents dimer from break-up.
R(l!1,r) + R(l!2,r) -> R(l!1,r!3).R(l!2,r!3) kon
R(l,r!3).R(l,r!3) -> R(l,r) + R(l,r) koff

Please note the flexibility in the mechanisms providing phosphorylation of A:
• The rule as written above requires only two receptors in a complex for

phosphorylation of A. The model does not prevent a ligand from
binding/dissociation from the receptor, thus any dimer (with 1 or 2 ligands or
without ligands at all) can phosphorylate A.

• To restrict phosphorylation to L-R-R-L complexes, introduce
L().L().R().R().A(Y~U) -> L().L().R().R().A(Y~P) kAp

• We may request that at least one ligand is required:
R().R(l!1).A(Y~U) -> R().R(l!1).A(Y~P) kAp

• Finally, we can request which ligand is required by using explicit bonds:
L(r!1).R().R(l!1,a!2).A(r!2,Y~U) ->
L(r!1).R().R(l!1,a!2).A(r!2,Y~P) kAp

Exercise: Find the number of species and reactions for each of the above cases.

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 14

2.8. Changing parameters, network pre-equilibration and simulation

Sometimes one needs to change parameters during simulation. This is done as follows:

generate_network({overwrite=>1});
writeSBML({suffix=>"initial"});
writeNET({suffix=>"initial"});

Equilibration
setConcentration("L(r)",0);
setParameter("L0",200);
writeSBML({suffix=>"equil"});
writeNET({suffix=>"initial"});
simulate_ode({t_end=>100000,n_steps=>10,sparse=>1,steady_state=>1});

Kinetics
setConcentration("L(r)","L0");
writeSBML({suffix=>"kinetics"});
writeNET({suffix=>"initial"});
simulate_ode({suffix=>"kinetics",t_end=>120,n_steps=>120,atol=>1e-
8,rtol=>1e-8,sparse=>1});

Comments to the model:

• The setParameter command sets a parameter value.
• The setConcentration command sets the concentration of a particular species.
• writeNET and writeSBML output files when user requests. The requested suffix is

added to the file name.
•

Input and output files used by BioNetGen2.

|BNGL file|-> generate_network -> NET file (contains generated
----------- species, reactions, and observables)
 -> simulate_{ode,ssa}-> CDAT file (concentrations of all species)
 -> GDAT file (concentrations of observables)
 -> writeSBML -> XML file (contains parameters, species, reactions,
 and observables in SBML level 2format)

2.9. Fluorescent labeling of molecules

In some cases we have a reaction network and we add a property that is “carried
through” the network. The simplest example is fluorescent labeling.

begin parameters
 A_fre 50
 B_tot 100
 D_tot 100
 E_tot 100
 k1f 1
 k1r 1
end parameters

begin species

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 15

A() A_fre
B() B_tot
C() 0
D() D_tot
E() 0
end species

begin reaction rules
A() + B() <-> C() k1f, k1r
C() + D() <-> E() k1f, k1r
end reaction rules

generate_network({overwrite=>1});
writeSBML({});

In this example, we start from the simplest reaction network A + B -> C, C + D -> E.
Now we fluorescently label A. Fluorescence is passed to C and E, and each fluorescent
species can be bleached. The reaction network for fluorescent network is doubled in size:
it has now 8 species and 7 reactions versus 5 species and 2 reactions of the initial reaction
network. For larger networks, this expansion will be error-prone if done by hands.
BioNetGen provides a mechanism for introducing the labels. We introduce:

• A label for each molecule that can be in fluorescent state: A(label~none~F),
B(label~none~F), C(label~none~F).

• Extend reactions by introducing labels
• Introduce bleaching reactions.

begin parameters
 A_fre 50
 A_flu 50
 B_tot 100
 D_tot 100
 E_tot 100
 k1f 1
 k1r 1
end parameters

begin molecule types
A(label~none~F)
B()
C(label~none~F)
D()
E(label~none~F)
end molecule types

begin species
A(label~none) A_fre
A(label~F) A_flu
B() B_tot
C(label~none) 0
D() D_tot
E(label~none) 0
end species

begin reaction rules

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 16

A(label%1) + B() <-> C(label%1) k1f, k1r
C(label%1) + D() <-> E(label%1) k1f, k1r
A(label~F) -> A(label~none) k1f
C(label~F) -> C(label~none) k1f
E(label~F) -> E(label~none) k1f
end reaction rules

generate_network({overwrite=>1});
writeSBML({});

Another representation of the same process, even more compact:

begin molecule types
A(label~none~F,in_complex~none~C~E)
B
D
end molecule types

begin species
A(label~none,in_complex~none) A_fre
A(label~F,in_complex~none) A_flu
B() B_tot
D() D_tot
end species

begin reaction rules
A(in_complex~none) + B <-> A(in_complex~C) k1f, k1r
A(in_complex~C) + D <-> A(in_complex~E) k1f, k1r
A(label~F) -> A(label~none) k1f
end reaction rules

2.10. Introducing potentially infinite chains

Let us now describe chains and rings formed by interactions of bivalent ligands and
bivalent receptors. There are three rules: ligand binding to a receptor, chain elongation
and ring closure. The model generated by BioNetGen includes all chains and rings
consisting of no more than 5 ligand and 5 receptors - a total of 20 species and 92
interactions.

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 17

begin parameters
 kp1 0.00001
 km1 0.01
 kp2 0.00001
 km2 0.01
 kp3 0.00001
 km3 0.01
 R0 100
 L0 100
end parameters

begin seed species
 R(r,r) R0
 L(l,l) L0
end seed species

begin reaction rules
R(r) + L(l,l) <-> R(r!1).L(l!1,l) kp1,km1 # Ligand addition
R(r) + L(l,l!2) <-> R(r!1).L(l!1,l!2) kp2,km2 # Chain elongation
R(r).L(l) <-> R(r!1).L(l!1) kp3,km3 # Ring closure
end reaction rules

generate_network({max_stoich=>{R=>5,L=>5}});

Let us comment on the model:

• The model now consists of 20 species and 92 reactions.
• You can add comments to the any place of the model. Everything on the line after

will be treated as a comment.
• The generate_network command generates a complete or partial network of

species, reactions, and observables through iterative application of the rules to the
initially defined species. For each iteration, the entire set of rules is applied to all
of the current species, potentially generating new reactions and species. New
species generated at the current iteration are not added to the species list until all
of the rules have been applied. The order in which the rules are specified in the
input file therefore does not affect the species and reactions generated at each
iteration, although it will affect the order in which they appear in the species and
reaction lists. The parameters that affect the behavior of the generate_network
command are given in the Table below.

Table . Parameters for the generate_network command

Name Function Default value
--
check_iso Perform isomorphism check 1 (On)
 for species that generate
 identical strings (keep this on
 unless you know what you're doing!)
max_agg Max. number of molecules 1e99
 in one species
max_iter Max. number of rule applications 100
max_stoich Sets limit for number of molecules Unset
 of each specified type in one species
 (hash- see syntax above)

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 18

--

Calling generate_network with the default parameters (no parameters specified) will
cause network generation to proceed until the set of species and reactions no longer
increases with further application of the rules. Some rules sets generate an infinite
number of species and reactions, so in practice the maximum number of iterations is set
to a finite value.

2.11. simulate_ode();

The simulate_ode command is used to compute a timecourse of the network using
ordinary differential equations to represent the average concentration of each species. The
initial concentrations for species defined in the Species block are set to the declared
values, while the concentrations of all species generated by generate_network are set to
zero. simulate_ode calls the program Network, which provides an interface to the
general-purpose ODE-solver CVODE. Adaptive implicit multi-step methods are used in
the propagation to ensure efficient and accurate solution of the ODE's, which are usually
stiff for networks with more than a few species. For very large systems (more than a few
hundred species), then the sparse=>1 option is recommended. (We find that most systems
are sparse.) With this option, CVODE uses sparse matrix methods to avoid storage of the
n_species x n_species Jacobian matrix, which becomes prohibitive for systems with more
than about 104 species, and the iterative GMRES algorithm to solve the required systems
of linear equations. This enables networks with 103-104+ species to be simulated in a few
minutes (or less) on standard processors, even with stiffness.

Note that the parameter sample_times, which sets the times at which the concentrations
are to be sampled, is an example of an array-valued parameter. Its argument is a comma-
separated list of numbers enclosed by square brackets. The command

 simulate_ode({sample_times=>[1,10,100]});

would cause the species concentrations and observable values to be printed at times of 0,
1, 10, and 100.

Table . Parameters for the simulate_ode command. * indicates required parameters.

Name Function Default value
--
atol Absolute error tolerance 1e-8
 for species concentrations
n_steps Number of intervals at 1
 which to report concentrations
rtol Relative error tolerance 1e-8
 for species concentrations
sample_times Times at which concentrations are none
 reported (supercedes requirment for t_end)
sparse Turns on use of sparse matrix formation 0 (Off)
 of the Jacobian and iterative solution
 of linear equations using GMRES.

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 19

 Recommended for networks with more than
 a few hundred species
steady_state Setting this to non-zero turns on check 0 (Off)
 equilibration of species concentrations.
 Time course will stop when steady state
 is reached. If it is not reached in the
 allotted time the simulation will stop with
 an error.
t_start Starting time for integration 0
t_end* End time for integration None
--

2.12. Customization for interactions with the Virtual Cell

begin parameters
 A0 1000
 B0 500
 kp1 0.46e-5
 km1 1.0
 p 100
 d 5
 t 10
end parameters

begin species
 A(b,loc~Cyt) A0
 B(a,Y~U,loc~Cyt) B0
end species

begin reaction rules
 A(b,loc~Cyt) + B(a,loc~Cyt) <-> A(b!1,loc~Cyt).B(a!1,loc~Cyt) kp1,
km1
 A(b!1).B(a!1,Y~U) -> A(b!1).B(a!1,Y~P) p
 B(Y~P,a,loc~Cyt) -> B(Y~P,a,loc~Nuc) t
 B(Y~P,loc~Nuc) -> B(Y~U,loc~Nuc) p
end reaction rules

begin observables
 Molecules A A()
 Molecules BP B(a!?,Y~P)
 Molecules BPC B(a!?,Y~P,loc~Cyt)
 Molecules BPN B(a!?,Y~P,loc~Nuc)
end observables

generate_network();
writeSBML();
simulate_ode({t_end=>50,n_steps=>20});

#%VC% mergeReversibleReactions
#%VC% speciesRenamePattern("\." , "_")
#%VC% speciesRenamePattern("[\(,][a-zA-Z]\w*", "")
#%VC% speciesRenamePattern("~|!\d*", "")
#%VC% speciesRenamePattern("\(\)", "")
#%VC% speciesRenamePattern("\)", "")
#%VC% setUnit("all", "default")

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 20

#%VC% compartmentalizeSpecies("loc~Nuc", "Nucleus", "Cytoplasm")
#%VC% compartmentalizeSpecies("loc~Cyt", "Cytoplasm", "")

2.13. Rate laws

Saturation and Michaelis-Menton rate laws can be invoked using one of the keywords for
the allowed rate law types followed by a list of parameters in the parenthesis. The
reaction

S + E -> P + E Sat(kcat,Km)

will have the rate law, rate= kcat*[S]*[E]/(Km + [S]). Note that the term in the
denominator must appear first in the reaction rule.

Also, note that the second species (in this case 'E') is optional on the left hand side of the
reaction, such that the reaction

E -> E + P Sat(kcat,Km)

will have the rate law, rate= kcat*[E]/(Km + [E]).

There is also a MM rate law type that gives the rate of the reaction corrected for the
amount of S bound in the ES complex (solves quadratic formula for [S]free). This will
give a closer approximation to the kinetics of the two elementary processes. The reaction

S + E -> P + E MM(kcat,Km)

will have the rate law, rate= kcat*[S]_free*[E]/(Km + [S]_free), where [S]_free is
determined by

[S]_free= 0.5*(([S]-Km-[E]) + (([S]-Km-[E])^2 + 4*Km*[S])^(1/2))

2.14. Symmetric Reaction Rules

This is a confusing subject, so let's consider a simple example.

A(a) + A(a) -> A(a!1).A(a!1) kd

If A has a second domain b~U~P, then BNG will generate the following reactions

A(a,b~U) + A(a,b~U) -> ... 0.5*kd
A(a,b~U) + A(a,b~P) -> ... kd
A(a,b~P) + A(a,b~P) -> ... 0.5*kd

Only the second reaction agrees with what you think it should be. The extra factor of 0.5
is coming from the reaction kinetics, because the two reactants are the same, rather than

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 21

multiplicities. Consider two reactions A + B -> ... and A + A -> If N_A= N_B, the
number of collsions per second for the first reaction is proportional to N_A*N_B and for
the second reaction is proportional to N_A*(N_A-1)/2. The factor of two that BNG is
adding is due to the factor of two in the denominator. We decided to put this in the net
file explicitly, because we assumed that most programs would not add the extra factor of
two when computing the rates of symmetric reactions. If the factor of two is not added,
then the total rate of reactions generated by the rule is not correct. In the example above,
the rates of the reactions (without correction) would be

A(a,b~U) + A(a,b~U) -> ... kd
A(a,b~U) + A(a,b~P) -> ... kd
A(a,b~P) + A(a,b~P) -> ... kd

which neglects the fact that the symmetric reaction should occur at half the rate of the
asymmetric one.

2.15. simulate_ssa();

The simulate_ssa command is used to compute a timecourse of the network using the
Gillespie direct algorithm for simulation of the stochastic master equations. When using
this method to simulate a network, the species concentrations must be provided in
number of molecules (per cell or per fraction of a cell) and the rate constants must be
scaled accordingly. BNG2 does not currently provide any functions for performing unit
conversions. The simulate_ssa interface is still incomplete and additional functionality
will be added as needed. Currently, only one simulation run can be performed per
command invocation.

The main difference between the simulate_ssa command and standard Gillespie
implementations, is that species and reactions can be generated by application of the
reation rules on-the-fly. No special parameters are required to access this functionality.
This is done by keeeping track of whether the reaction rules have been applied to each
species. When a species to which the rules have not been applied becomes populated for
the first time, the rules are applied to that species to generate new reactions and species
and to update observables. This adaptive generation of the network is particularly useful
for infinite networks. A simulation can be carried out adaptively by setting a small value
for max_iter in the generate_network command prior to the simulate_ssa command, say
1. The stochastic simulation will then map out the network over the course of the
simulation.

 Parameters for the simulate_ssa command are the same as for simulate_ode: n_steps,
sample_times, t_start, t_end*

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 22

EGF
+

R

Ra

Y

YShcP
Grb2
Sos

Y

pY

YY

PLCγ

Y1068

Y1148/74

Y992

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

YpY

Y

Y

Y

Y

YpY PLCγP

Y

Y

Y

Y

YpY

Y

YShcP

Y

pY

YY

Y

YShcP

Y

pY

YY

Y

YShc

Y

pY

YY

Grb2

Y

Y

pY

Y

YY

Grb2 Y

Y

pY

Y

YY

Grb2
Sos

Y

Y

Y

pY

YY

Y

Y

pY

Y

YY

ShcP
Grb2 Sos

ShcP
Grb2

Sos
Grb2

Sos ShcP

Shc
Grb2

Grb2
Sos

PLCγP

PLCγ

Grb2
Sos

RP
1068RP

1148/74
RP

992

Ra

RP

1 2

3 4 5

6

7

9
11

10

13

14

15

17

1819

20

24

R2

Box 1. Box 4.

Box 2.Box 3.

Y
Ys-P

EGF binding Ligand-induced dimerization

Transphosphorylation in a dimer
Grb2 binding to
receptor phosphotyrosine

Grb2-Sos binding to receptor
phosphotyrosine

Sos binding to Grb2 associated with
receptor phosphotyrosine

Shc binding to receptor phosphotyrosine

Shc transphosphorylation
by receptor kinase

Dephosphorylation of
unprotected tyrosine residues

Shc dephosphorylation

Y-P Y

Grb2-Sos binding in cytosol

Grb2-Sos binding to ShcP associated with receptor
phosphotyrosine

(B) Reaction rules

Y-P
Ys-P

Yg Yg-P Yg-P Yg-P Yg-PYg
Ys

Ys-P

Ys-P YsYs-P Yg-P Yg-P

Yg-P

Ys-P

Y-P
Ys-P

Y-P
Ys-P

Yg-P

k+1
k-1

k+2
k-2

k+3k+3 k-3k-3 k+9

k-9

k+11

k-11

k+10

k-10

k+13

k-13

k+14

ShcP binding to receptor
phosphotyrosine

Ys-P Ys-P

k+15

k-15 Y-PY-P

k-14

 ShcP-Grb2 binding to receptor
phosphotyrosine

Ys-P Ys-P

k+18

k-18Y-P

(a) Molecules:

Grb2
binding
site

Y
Y-P

Shc

EGF

EGF binding domain

Grb2 binding site

Shc binding site

EGF Receptor

Ys-U
Ys-P

EGFR binding domain
Yg-U
Yg-P

SH2

SH3-SH3
Grb2

Sos

EGFR
binding
site

k+24

k-24

k+12

k-12

Ys-P
Y-P

k+17

k-17 Ys-P
Y-P

Grb2 recruited to ShcP associated
with receptor

Ys-P

k+20

k-20 Ys-P
Y-P

Shcp-Grb2-Sos binding to
receptor phosphotyrosine

Ys-P

k+19

k-19 Ys-P
Y-P

Sos binding to ShcP-Grb2 associated with receptor
phosphotyrosine

Y-P

Y-P

k+23

k-23 Y-P

k+22

k-22 Y-P

Y-P
k+21

k-21
Y-P

ShcP-Grb2 and Sos binding in cytosol

Y-P

ShcP and Grb2-Sos binding in cytosol

ShcP and Grb2 binding in cytosol

ShcP + Grb2-Sos <-> ShcP-Grb2-Sos

3. Rule-based modeling of complex signaling systems

3.1. Epidermal Growth Factor Receptor Signaling

For discussion of results, see Blinov ML et al., BioSystems 2006.

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 23

2k+1

k-1

k+L

k-L

k+S

k-S

γ2 γ2γ2γ2

γ2 γ2

γ2

k*+L

k*-L
γ2 γ2

k+2

2k-2

Ligand binding (48)

Constitutive Lyn binding (312)

Inactive Syk recruitment (416) Active Syk recruitment (416)

Lyn recruitment (312)

Receptor aggregation (1152)

γ2

Phosphorylation of β by Lyn (72)

Dephosphorylation (680)

pLb

γ2γ2 γ2γ2

p*Lb

γ2γ2 γ2γ2

γ2

k*+S

k*-Sγ2 γ2

Phosphorylation of γ by Lyn (48)

pLg

d

γ2γ2 γ2γ2

p*Lg

γ2γ2 γ2γ2

Phosphorylation of Syk by Lyn (96)

γ2γ2

pLS

p*LS

γ2γ2

γ2γ2

γ2γ2

Phosphorylation of Syk by Syk (128)

2pSS

p*SS

γ2γ2

γ2γ2

γ2γ2

γ2γ2

Lyn

IgE dimer

γ2

FcεRI

ITAMs

(a) Components

Syk

linker region

activation
loop

(c) A few of the 164 dimer states with active Syk

γ2γ2γ2γ2
γ2

γ2

SH2
domain(s)

=

tyrosine(s)=
phosphorylated
tyrosine(s)=

γ2

(b) Possible states of receptor subunits

γ2γ2 γ2 γ2

na=2

nb=4

ng=6

0

0

0

1

1 2

2

3

3 4 51

γ2

(a) Molecules
Lyn

SH2

Lig

Fc

Syk

L
A

L-Y
L-pY
A-Y
A-pY

β-Y αγ-Y L-Y
A-Y

Free-LynFree-Lig Free-FceRI

(b) Species types

Free-Syk

γ−pYβ−pY

(c) Observables

FceRI

 (d) Reaction Rules
1. Ligand binding

2. Ligand-induced aggregation

3. Binding of Lyn to unphosphorylated receptor

α

α α

α

β-Y

β-Y

β-Yβ-Y

4. Binding of Lyn to phosphorylated receptor

5. Transphosphorylation of β by Lyn

β-pY

β-pY

β-pYβ-pY

γ-Y

γ-Y

β γ-pY

γ-pY γ-pY

γ-pY

γ-pYγ-pYβ

6. Transphosphorylation of γ by Lyn

7. Binding of Syk to phosphorylated receptor

8. Transphosphorylation of Syk by Syk

A-Y

A-Y

A-pY

A-pY

9. Transphosphorylation of Syk by Lyn

10. Dephosphorylation

β β

L-Y

L-Y

L-pY

L-pY

α α

β

FceRI-Lyn

3.2. FceRI immunoreceptor signaling

For discussion, see Faeder JR et al., JI 2003

Rule-Based Modeling of Biological Systems using BioNetGen Modeling Language

 24

3.3. Actin filaments

Pollard & Borisy, Cell 112 (2003)

ATP-actin
ADP-Pi-actin

ADP-actin
Cofilin
Cap

Michael L. Blinov, James R. Faeder, William S. Hlavacek

 25

References

Available at http://www.ccam.uchc.edu/mblinov/Blinov_publications.html

M. L. Blinov, J. Yang, J. R. Faeder and W. S. Hlavacek (2006) Graph theory for rule-
based modeling of biochemical networks. Transact. Computat. Syst. Biol. VII in the
series Lect. Notes Comput. Sci. 4230, 89-106.

J. R. Faeder, M. L. Blinov, B. Goldstein and W. S. Hlavacek (2005) Rule-based modeling
of biochemical networks. Complexity 10, 22-41.

M. L. Blinov, J. R. Faeder, B. Goldstein and W. S. Hlavacek (2004) BioNetGen: software
for rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20, 3289-3291.

Contributors

BioNetGen, Los Alamos National Laboratory: Matthew Fricke, Jeremy Kozdon, Nathan
Lemons, Ambarish Nag, Michael Monine, Byron Goldstein

BioNetGen@VCell, Center for Cell Analysis and Modeling, University of Connecticut
Health Center: Mikhaill Levin, James Schaff, Anuradha Lakshminarayana , Fei Gao, Ion
Moraru, Leslie Loew

