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INTRODUCTION 

SpringSaLaD is a particle-based, stochastic, biochemical simulation platform.  It is most suitable for modeling 

mesoscopic systems, which are far too large to be modeled with molecular dynamics but which require more 

detail than obtainable with macroscopic continuum models.  A good example of such a system is ligand-

mediated receptor clustering, where coarse-grained particle-level interactions are required but atom-level 

information is not of interest.  In general, SpringSaLaD is best used to model mesoscopic particles (diameters of 

1 – 10 nm, which could represent a functional protein domain), moderately sized systems (10 – 10,000 

particles), and times scales on the order of 1 second, but no actual restriction is set on size or scale of the 

simulated system. 

Here we will give a brief introduction to the modeling concepts underlying SpringSaLaD.   The tutorial which 

follows explains all of the features of SpringSaLaD by showing the steps required to build a toy model of 

receptor kinase activation. 

MODELING FRAMEWORK 

Molecules 

SpringSaLaD models molecules as a collection of spherical sites linked by stiff, unbreakable springs.  In a loose 

sense the sites are intended to represent mesoscopic protein domains, such as SH2 domains or catalytic 

domains.  Each molecule is assumed to contain various site types, and each site in the molecule is assigned one 

of these types.  Parameters which define the site’s physical and biochemical properties are assigned to the type, 

and then each site is assigned to a defined type.   Each site type is associated with a physical radius which 

enforces excluded volume, a diffusion constant, a color (for display purposes only), and one or more internal 

states.  These internal states are used to represent different biochemical states of the same site, for example, an 

enzymatic site which may be either active or inactive. 

As an example to illustrate these concepts, consider protein kinase A, which is composed of two regulatory 

domains and two catalytic domains.  Each regulatory domain can bind up to two cAMP molecules, and each 

catalytic domain can be either active or inactive.  To create PKA in SpringSaLaD, we would first define the two 

site types, regulatory and catalytic.  We would assign three states to the regulatory type to describe the number 

of bound cAMP molecules (0, 1 or 2), and would assign two states to the catalytic type to indicate an active or 

inactive site.   We would then create four sites, assigning two sites to be regulatory sites and two sites to be 

catalytic sites.  Lastly, we would create links (springs) between each regulatory/catalytic pair, and between the 

regulatory sites.  Figure 1 shows a depiction of this model representation of PKA. 
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Figure 1: Model representation of protein kinase A in SpringSaLaD.  The table at top shows the various site 

types, sites, and links used to define the molecule, as described in the text.  The figure at bottom shows the sites 

and their connecting links. 

Reactions 

SpringSaLaD supports a variety of reactions commonly used in biochemical simulations.  

Zeroeth Order Reactions 

SpringSaLaD supports zeroeth order “creation” reactions (also known as “birth” reactions) which spontaneously 

generate new particles.  These reactions are defined by a rate constant with units of 𝜇𝑀/𝑠.   

First Order Reactions 

SpringSaLaD supports three general categories of first order reactions, each of which is characterized by a rate 

constant with units of 𝑠−1. 

a) Decay Reactions 

These reactions spontaneously destroy a particle.  Decay reactions are often used with creation reactions 

in order to buffer the concentration of a particular species.  

b) Dissociation Reactions 

These reactions destroy the spring connecting two sites, which allows to previously bonded sites to 

dissociate.   

c) State Transition Reactions 

These reactions change the internal state at a particular site.  For example, a state transition reaction 

would be used to convert a catalytic site from inactive to active.  Transition reactions are further divided 

into four groups depending on the restrictions placed upon the reaction. 

 

 Free.  The reaction can only occur if the site is unbound.  

 Bound.  The reaction can only occur if the site is bound.  
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 Allosteric.  The reaction can only occur if another specific site in the same molecule is in 

a particular state.  

 None.  The reaction can proceed without conditions.  

Second Order Reactions 

SpringSaLaD supports bimolecular binding reactions characterized by a rate constant with units 𝜇𝑀−1𝑠−1. 

TUTORIAL 

In this tutorial we will show how to use SpringSaLaD to create a simple toy model resembling MAPK 

activation.  Specifically, we will assume the system consists of an extra-cellular ligand, 𝐿, a trans-membrane 

receptor kinase, 𝑇, and an intra-cellular substrate, 𝑆, which is activated when phosphorylated by 𝑇.  𝐿 will 

consist of a single site with a single biochemical state.  𝑇 consists of three sites: 1) an extra-cellular ligand 

binding domain, 𝐵, 2) a trans-membrane anchor, 𝐴, and 3) an intra-cellular kinase domain, 𝐾.  The binding 

domain has two states which represent different structural configurations in the absence or presence of bound 

ligand, which we simply label as states 0 (no ligand) and 1 (with ligand).  The kinase domain will have two 

states, “off” and “on,” and is activated by an allosteric reaction once ligand binds to the ligand-binding 

domain.  𝑆 consists of a single site with two possible states, phosphorylated (p) or unphosphorylated (u).  The 

initial condition will have all 𝐵 domains in the unbound configuration (state 0), all 𝐾 domains turned off, and 

all 𝑆 unphosphorylated.  The observable of interest is the number of phosphorylated 𝑆 molecules in the system.  

Figure 2 shows a schematic of the molecules and the reactions in the system, while Table 1 indicates the values 

of the parameters used in this tutorial.   

While simple, this model allows us to show how to use most of the features in SpringSaLaD.  Features which 

are not used in constructing this model will also be discussed in the appropriate sections.   
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Figure 2: Schematic representation of the species and reactions for the system used in the tutorial.  
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Parameter Value 

𝑘𝐿0,𝑜𝑛 20 𝜇𝑀 𝑠−1 

𝑘𝐿0,𝑜𝑓𝑓 100 𝑠−1 

𝑘𝐿1,𝑜𝑛 40 𝜇𝑀 𝑠−1 

𝑘𝐿1,𝑜𝑓𝑓 10 𝑠−1 

𝑟0 1000 𝑠−1 

𝑟1 1000 𝑠−1 

𝑟𝑎𝑐𝑡 1000 𝑠−1 

𝑟𝑖𝑛𝑎𝑐𝑡 10 𝑠−1 

𝑘1 10 𝜇𝑀 𝑠−1 

𝑘2 20 𝑠−1 

𝑘3 1000 𝑠−1 

𝑟𝑝 100 𝑠−1 

𝑟𝑢 10 𝑠−1 

Table 1: Values of the rate constants used in the tutorial example.  These values are all reasonable from a 

biological perspective, but are used here for illustrative purposes and are not intended as an accurate 

representation of any particular system. 

Running SpringSaLaD 

SpringSaLaD requires Java 8.0, which can be freely downloaded from https://www.java.com/en/download/ .  

SpringSaLaD is provided as a pair of JAR files, “SpringSalad.jar” and “LangevinNoVis01.jar”.  These JAR 

files contain all program dependencies; for example, Java3D is pre-packaged and does not require the user to 

perform a separate download and install.  Put the two JAR files in the same folder, then double-click on 

SpringSalad.jar.   

Defining Molecules 

Upon opening SpringSaLaD there will be a menu of options in the left-hand panel.  Click on “Molecules” and 

then click “Add New” in the center panel.  

https://www.java.com/en/download/
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The center panel will now show the molecule editor pane.  At the top are panels to define the site types, the 

sites, and the links.  To begin we will name the molecule “Ligand” and set it to be “Extracellular.”   

  

To define the ligand, we must first add a new site type, which we will call L.  Click on “Add Type” and an 

editor will pop up allowing you to name the type and define its characteristics.  We’ll call the type “L”, and give 

it a radius of 2 nm and a diffusion constant of 2 𝜇𝑚2/𝑠.  We’ll make the site green so that the coloring agrees 

with Figure 2.  The ligand in this example only has a single biochemical state, so we will not add any states to 

this type.  Click “Finish” and the newly defined type will be listed in the “Types” panel. 

(Note: For the “Site Type Editor” and most other pop-up windows, it is not possible to click “x” to close the 

window.  This feature has been disabled to force the user to use buttons, such as “Finish” or “Cancel”, to close 

the window.  This was done so that the program could provide some level of error checking to user input, and 

so the user’s intention was made clear.)    
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We can add a site to the molecule now that we’ve defined a site type.  Click on “Add Site” and a site picker 

window pops up.   

 

As we only have one site type to there is nothing to choose here.  Click finish and you will see that the site has 

been added in in the molecule display panel.  
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Now we define the receptor kinase.  Click on the “Molecules” tab and again click on the “Add New” button.  

You will be taken to a blank molecule editor.  Name the molecule RK and set it to be on the membrane.  You 

will notice that (1) a site type called “Anchor” was created automatically, and (2) it was added to a membrane 

structure in the molecule display panel.  The membrane structure may be dragged to a different location in the 

display panel.  Finally, click the “Set at 2D” checkbox.   This will force all sites to diffusion in a 2D plane 

parallel to the membrane. 

 

All membrane-bound molecules are required to have an inert membrane anchor whose sole purpose is to tether 

the molecule to the membrane.  Additional anchors may be added if desired.  The molecule display panel also 

indicates the extracellular and intracellular regions of the molecule.  The anchor properties and color may be 

edited as with any other site type, but additional states may not be added.  In this example we will change the 

Anchor type to have a radius of 2 nm.   

We create a second site type called “B” for the ligand binding domain.   This type will have two states, State0 

and State1, representing a configuration without and with ligand, respectively.  Open the site type editor and 

click on the “Add State” button.  As these are the default names, just click finish.  

Lastly, we create a site type called “K” for the kinase domain.  This type will have two states, “off” and “on.”  

In the site type editor we click on the default state, “State0”, and then click “Edit State” to change its name to 

“Off.”  We then click “Add State” and create the state “On.”  The site type editor should show the following 

before clicking “Finish.” 
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Now click the “Add Site” button to add a site.  The site picking window will now let you choose between the 

three types defined for this molecule.  Additionally, when adding the “B” and “K” types you can choose to add 

them to either the extra- or intra-cellular side of the membrane.   Add a single “B” site to the extracellular side 

and a single “K” type to the intracellular side.  The screen should show the following.  

 

Now create links between these sites.  We want to connect the anchor to each of the domains.  Click on the 

“Add Link” button and the link creation window will pop up.  Choose the Anchor site and the B site and click 

“Create Link.”   
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Now add a second link between the Anchor and the K site.  The molecule will look something like this.  

 

To make the molecule linear we will explicitly set the positions of each site.  First drag the Anchor site until its 

y-coordinate (which is shown in the “Sites” panel) is at 5 nm, and make note of its z-position.  Then click on the 

B site, and in the Sites panel, click the “Set Position” button.  A window will pop up allowing you to specify the 

position of the B site.  Keep the x position at 0, set the y position to 5, and set the z-position to be 5 nm less than 

the z-coordinate of the anchor site.  (Assuming the sites each have a radius of 2 nm, this will leave a bond of 

length 1 nm between the sites.)  Repeat these steps for the K site, but now set the z-coordinate to be 5 nm larger 

than the Anchor’s z-position.   The molecule will look like this.  

 

Before finishing with this molecule, click on the K site.  The site panel will show its initial state.  If it is not 

“off”, click the drop down box and select the “off” state.  Then click on the B site and make sure its initial state 

is “State0.” 

Lastly we create the substrate which is phosphorylated by the receptor kinase.  Repeat the steps to add a new 

molecule, call it “Substrate”, and set it to be intracellular.  Create a single site type called S with two states, “u” 

and “p”, and add a single site to the system.   Check that the initial state is set to “u.”  
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3D Editor 

The molecules created above were either single sites or linear chains of sites. SpringSaLaD supports 

construction of an arbitrarily shaped molecule with an arbitrary number of sites.  For example, suppose we want 

to construct a tetrahedral molecule composed of four identical sites.  We create the molecule, make a single site 

type, and add four sites to the system.  Next, click the “Edit in 3D” button at the bottom of the molecule display.  

 

A new window will appear which shows the 3D configuration of the molecule.  

  

A particular site may be selected by clicking on it with the mouse. Its current position will be shown in the 

molecule editor panel. It may be translated to a new position by entering the desired translation distances on the 

right in the 3D editor panel, then clicking the “Translate” button. 
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To translate multiple sites at once, hold the “Ctrl” key and use the mouse to click multiple sites. When all the 

desired sites are highlighted, enter the desired translation distances, and click the “Translate” button. 

 

Links may be directly added between two sites in a molecule. To select two sites hold the “Ctrl” key and use the 

mouse to click on the two sites to link. 

 

Pressing “Add Link” will create a link between the two sites. Similarly, selecting a link and clicking the 

“Remove Link” button will remove that link. Only one link between two sites may be added at a time. 
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Additional sites may be added through the molecule editor panel, as in the 2D case.  We will not bother with the 

remainder of the steps required to create the tetrahedron. The rest of the options and buttons in the 3D editing 

panel are especially useful in the creation of a model from a structure file and will be explained as part of that 

process. 

Create 3D Molecule From Structure File 

SpringSaLaD supports the semi-automated construction of a 3D molecule from a protein structure file (“.pdb” 

or “.cif” format) that contains detailed atomic data about a molecule. The steps to add a molecule from such a 

file to the current model are outlined below: 

1. Navigate to the “File” tab. Then select the “Add PDB from file” option: 

  

The user should then select the file using the file browser that is brought up. Following selection of the 

file, a pop up will appear, prompting further input. 

2. Enter the number of sites to generate from the structure file and hit the “OK” button: 

 

3. Enter coordinates to control automated molecule generation (optional):  
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With no additional input, SpringSaLaD will automatically generate a molecule with the number of sites 

entered. However, the user can control this behavior by “fixing” sites if the coordinates for the locations 

of important residues in the molecule are known. Fixing a site will ensure that when SpringSaLaD 

automatically generates the molecule it creates a site at the desired user location in that molecule. The 

decision to fix sites is ultimately a user decision based in part on how well the user decides 

SpringSaLaD generated the molecule. 

 

The location of a residue can be found from opening the structure file either in a text editor and 

searching for the location, or viewing the file in a visualization program that can provide the coordinates 

when selecting an atom.  

 

Here using Jmol, an atom at location (-5, -4, 38) is selected. It is important to translate the coordinate 

system used to nm. Once the coordinates are entered, click the “OK” button. 

 

 
 

The user may input as many fixed sites as total sites entered in the previous step. To stop entering fixed 

sites after any number have been entered (or if 0 fixed sites are desired), click the “Cancel” button.  

 

4. View the molecule and edit the molecule:  

 

To view the automatically generated molecule, find the new molecule under the “Molecules” options in 

the left-hand panel. It will appear with a unique identifier that can be changed by changing the molecule 

name. After clicking on the molecule name, the 3D editing window will open. By default, each site will 



16 
 

have its own type. Fixed sites will appear blue and the automatically generated sites will appear red. 

These and other defaults can be changed as described previously. 

 

                                            
 

 

In addition, a “Jmol Atom View” window will appear. This Jmol window displays the structure file 

through Jmol integration with SpringSaLaD. It maintains many of the functions of the Jmol stand-alone 

application (http://jmol.sourceforge.net). An easy way to access these functions is by left clicking the 

mouse in the Jmol window. The Jmol window will also appear for molecules edited in 3D without a 

corresponding structure file, but will appear empty.  

 

 

 
 

The user should use the two windows side by side to edit the automatically generated molecule in the 3D 

editing window to more accurately reflect the actual 3D structure. A few options SpringSaLaD supports 

to do this have been noted previously (add/remove sites/links, translate site location, etc.). Three 

additional options available for model editing are found below. 

http://jmol.sourceforge.net/
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The user can use the Jmol window to measure the distance between two atoms. This can be used to 

check that the radius of a site and length of a chain of sites. To measure distance, double click on the 

start atom and then double click on the end atom. The distance between them will appear. 

 

 
 

The radius of a site can be directly edited from the 3D Molecule Editor window, by entering the desired 

value next to “Set Radius (nm)” and then clicking the “Apply” button. In addition to the selected 

molecule, the radii of all sites with the same type will be changed as well. 

 

 
 

The orientation of the entire molecule can be flipped with respect to the x, y or z axis. To do so the user 

can click either the “Flip X” button, “Flip Y” button, or the “Flip Z” button. The user may find the 

flipping function useful to orient the molecule with respect to the membrane. For example, if the fixed 

sited (blue) should be farthest from the membrane, the user can click the “Flip Z” button to achieve the 

desired orientation. Adding the proper links, and translating the molecule closer to the membrane are 

next steps that are not shown. 
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Additional Options 

There are several buttons and options in the Molecule Editor panel which we did not discuss, but most of 

these are self-explanatory, such as the “Remove Site” button, and most will give a warning or prevent an 

action that could invalidate the model.  For example, the “Remove Site” button will not remove a site which 

is currently connected to a link, and the program will ask you to remove the link first.  However, there are 

two options which may require some instruction, and we discuss these here.  The reader who is not 

interested in these options can safely skip this section.  

Create Site Array 

SpringSaLaD contains a convenience method for creating long polymers (site arrays).  For example, imagine 

a polymer which consists of two different site types, A and B, and assume type A can be in one of two 

states, “on” or “off”, and that the polymer is arranged with 6 A sites alternating on and off, followed by 4 B 

sites, and this group of 10 sites is repeated 5 times for a total of 50 sites.  

 

We follow the usual steps to create a new molecule and create the two site types.  Click on the “Add Site 

Array” button in the Sites panel to open the site array editor. 
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Each type has been assigned a number, in this case A is assigned to 1 and B is assigned to “2”.  Each state has 

been assigned a letter, as indicated in the screenshot.  The syntax for creating an array is as follows: 

To create N identical sites in a row we write, for example, 1a(N).  Thus, 1a(10) tells the program to create 10 

sites each of type A, with initial state “Off”.  Note there must not be spaces in this expression.  To add 

additional sequences of sites we simply type the corresponding expression for those sites in a space separated 

list.  For example, 1a(4) 2a(3) 1b(5) would create a polymer with 4 A off sites, 3 B state0 sites, and 5 A on 

sites.  Finally, if a section of the polymer repeats we can indicate that by enclosing that section in square 

brackets, followed by the number of repeats in parentheses.  For example, rather than typing 1a(3) 2a(4) 1a(3) 

2a(4), we can simply type [1a(3) 2a(4)](2).  This bracket system allows the user to define arbitrary patterns in 

a concise notation. 

For the polymer described above we would enter the following expression in the text box under “Intracellular 

Array String”,  [ [1a(1) 1b(1)](3) 2a(4)](5) , which first creates a pair, Aoff and Aon, then repeats this pair 

three times, and follows those six sites with four B sites.  Finally those 10 sites are repeated 5 times, for a total 

of 50 sites.    

Next we define the gap distance between the sites.  The default is 1 nm, which we’ll use here.  

Finally, we can create the polymer as either a linear chain or as a helix.  The default is a linear chain.  To make 

a helix click the “Create as helix” checkbox, and enter the desired radius and pitch of the helix.  Here we’ll use 

the default linear option.  Click finish and we can view the polymer we just created (the display window can 

be resized to view the entire polymer).  
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Create Membrane Cluster 

One of the reasons for making SpringSaLaD was to develop a platform to study the consequences of membrane 

clustering, and we have included a convenience method to create a large membrane cluster from a single 

membrane molecule.  To use this feature, first create a membrane-bound molecule, then click on the “Create 

Cluster” button.  For this example we created the following simple membrane molecule.  

 

Clicking the “Create Cluster” button brings up the following window,  

 

which is used to define the number of rows and columns of a rectangular grid and the spacing between the 

anchor sites.   

We use the default options (5x5 cluster, 5 nm spacing) to create the following cluster, 

 

which is now treated as a single large molecule.  Note that creating a cluster replaces the original molecule 

with the cluster.  
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Defining Reactions 

Binding Reactions 

We will first define the binding reaction between the ligand and receptor.  Click on the “Binding Reactions” tab 

in the left panel, and then click the “Add new” button in the center panel.  The binding reaction panel will 

appear.  

 

Binding reactions are defined by specifying the following, in order:  the molecule, the site type, and the state the 

type must be in to react.  An “Any State” option exists to indicate a reaction is always allowed.  

First we will define the binding reaction between ligand and the B site in state 0.  The ligand only has a single 

site and a single state, so there’s nothing to choose there.  For the receptor kinase we choose the B site, and then 

choose state 0.  We name this reaction “Ligand Binding 0”, provide an on-rate and an off-rate, and define the 

length of the newly created bond.  Note that this length refers to the distance between the surfaces of the sites, 

not the center-to-center distance.  After defining the reaction the screen should look like the following snapshot.  
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Note: All reactions are automatically saved (there is no need to click a “Finish” button).  Partially completed 

reactions are allowed while building a model, but a model cannot be saved unless all reactions are completely 

defined.  For example, if you start a reaction but then realize you forgot to add a state to a site, you can go back 

and edit the molecule without losing the partially completed reaction. 

Next we define the binding reaction between ligand and the binding domain in state 1.   We assume that this 

state has a very high affinity for the ligand, so we’ll double the on rate and reduce the off rate 10-fold.  The 

steps are similar to those above.  Call this reaction “Ligand Binding 1.”   

Next we define the binding reaction between the receptor-kinase and the substrate which it phosphorylates.  We 

must define two different binding reactions, corresponding to the substrate in the phosphorylated and 

unphosphorylated state.  The phosphorylated substrate can dissociate but cannot bind to the receptor kinase.  

We call these two reactions “Binding Unphos” and “Binding Phos”.  (Note that although we call the reaction 

“Binding Phos,” we will only allow the phosphorylated form to dissociate.)  The screen shots for each reaction 

follow.  Recall that binding can only occur when the kinase site is on.  The on rate for “Dissociation Phos” is set 

to 0 to prevent the phosphorylated substrate from binding to the kinase.  
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Transition Reactions 

First we define the reaction which changes the configuration state of the binding domain from state 0 to state 1.  

Click on the “Transition Reactions” tab, then click “Add new.”  To define a transition reaction you must 

provide the molecule, site type, initial state, and final state of the reaction.   In addition, a reaction condition can 

be defined.  In this case the reaction can only proceed when the binding domain is actually bound by ligand.  

Thus, we choose the “bound” condition, and choose the ligand as the conditional molecule.  Call this reaction 

“BD 0 to 1.”  The screen should look as follows.  

 

Next define the reaction which reverses the above reaction, converting the binding domain from state1 to state 

0.  In this case we only want the reaction to proceed when ligand is not bound to the domain, so we choose the 

“free” condition.  Call this reaction “BD 1 to 0.”  The screen should look as follows. 
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Now define the phosphorylation and dephosphorylation reactions for the substrate.  The former requires the 

substrate to be bound to the “on” kinase domain, while the latter requires the substrate to be free (we could 

explicitly add a phosphatase, but we assume spontaneous dephosphorylation to keep the model simple).  The 

reactions screens are as follows.  
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Lastly, we define the transition reaction which deactivates the kinase domain.  We assume this reaction can 

proceed as long as substrate is not bound, so we use the “free” reaction condition.  The reaction screen is as 

follows.  
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Allosteric Reactions 

Next we define the single allosteric reaction, which activates the kinase provided the binding domain is in state 

1.  Click on allosteric reactions, then click the “Add new” button.  The upper part of the panel is similar to the 

transition reaction panel, but requires the user to select a specific site in the molecule, not just a site type.  In 

this case there is no distinction because each site is assigned to a different site type, but it is possible for a 

molecule to have two sites with identical site types but restrict the allosteric reaction to one of them.  The lower 

part requires the user to specify the allosteric site in the molecule and the state that site must be in for the 

reaction to proceed.  In this case we choose the binding domain as the allosteric site and “State 1” as the 

allosteric state.  The screen should look as follows.  

 

Data Constructs 

SpringSaLaD keeps track of various quantities at all levels of the simulation, from molecule statistics to 

information on the states of specific sites. There are five general classes of data counters which are listed under 

the “Data Constructs” tab:  molecule counters, state counters, bond counters, site property counters, and cluster 

counters.  By default the first four classes are activated, while cluster data is deactivated because tracking 

cluster sizes generates large data files.  In general there is no reason to change the defaults unless the simulation 

is being used to track clustering, in which case the cluster counter should be turned on by setting the checkbox 

in “Cluster Counter” panel.  

System Information 

The system information panel allows the user to specify the system geometry, the system times, and the initial 

conditions.  Clicking on the “System Information” tab will open a panel with a tab corresponding to each of 

these categories. 
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System Geometry 

At this point SpringSaLaD only support a single system geometry, namely, a cubic geometry with a single 

planar membrane at z=0.  The system geometry tab looks as follows.  

 

The first column specifies the size of the cube in the x and y directions (parallel to the membrane), as well as 

the height above (intracellular) and below (extracellular) the membrane.  The default values specify a rather 

small system.  We will increase the system size as follows: 𝑥 = 200 nm, 𝑦 = 200 nm, 𝑧𝑖𝑛𝑡𝑟𝑎 = 200 nm,

𝑧𝑒𝑥𝑡𝑟𝑎 = 200 nm. 

SpringSaLaD reduces the computational cost of collision detection by partitioning space into cubic domains, 

and the second column specifies the number of partitions to use in each direction.  By default there are 10 

partitions in each direction, which equates to 103 = 1000 partitions used in the simulation.  This number 

usually offers a good tradeoff between the increased number of overlap checks needed with too few partitions 

and the computational overhead incurred when using many more partitions.  Slight performance improvements 

might be obtained by finding an optimal number of partitions.  The user must be aware of the following 

restriction:  the minimum partition size must be larger than the diameter of the largest site in the system.  

Thus, the user must pay attention to the partition size, listed in column three, especially when using very small 

systems or a very large number of partitions.  With the default values and the system sizes listed above, the 

partitions used here are 20 nm x 20 nm x 40 nm, safely larger than the maximum site diameter of 4 nm.  

System Times 

The system times tab looks as follows.  

 

There are five times which must be specified.   

1) Total time:  This is the total simulation time. 

2) dt: The time step.  Suitable values are in the 1 − 10 ns range. 

3) dt_spring:  This specifies the time step to use for spring relaxation.  There is no reason to change the 

default value. 
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4) dt_data:  This specifies the time interval between taking data on the system configuration (molecule 

counts, state information, etc.).  The total number of data points will be 𝑁 = 𝑑𝑡/𝑑𝑡_𝑑𝑎𝑡𝑎.  

5) dt_image:  This specifies the time interval between storing system snapshots for the 3D viewer.   

We will use the default values for now. 

Initial Conditions 

The initial conditions tab looks as follows.  

 

The initial conditions can be defined using either particle number or concentration.  By default the molecules 

are placed randomly in their allowed space (intra- or extra-cellular, or on the membrane).  The initial positions 

of molecules can be set by the user by unchecking the “Random Init. Positions” checkbox and then clicking the 

“Set Initial Positions” button.  The user is cautioned that this feature is still in beta and SpringSaLaD performs 

minimal error checking, and thus care must be taken to ensure the entered positions are valid.  

SpringSaLaD uses the intracellular (extracellular) volume when calculating the concentration of intracellular 

(extracellular) species, as is appropriate.  However, for membrane-bound species SpringSaLaD uses the total 

system volume when displaying the concentration in this pane.  It is expected that future versions of 

SpringSaLaD will display surface concentrations for membrane-bound molecules.  

For the tutorial system we specify 20 ligand, 10 RK, and 20 substrate molecules. 

Saving the System 

SpringSaLaD requires the system to be saved before running simulations.  To save the system, click on the 

“File” menu, then click “Save.”  A save dialog will pop-up.  Choose a folder to save the simulation and choose 

an appropriate name, such as TutorialExample.  The simulation is saved as a plain text file.  Details about the 

file structure of this and other output files can be found later in the tutorial.  

Running Simulations 

Click on the “Tools” menu in the menu bar and select “Simulation Manager” to open the simulation manager 

frame.  
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Click “Add Simulation” to create a simulation.   

 

There are five columns specifying various features of the simulation.  

1) Simulation Name:  The name can be edited by clicking on it in the table. 

2) Total runs:  Many independent runs of the same system are usually required to calculate average system 

properties with statistical confidence. 

3) Parallel:  Indicate if the simulations should be run in parallel or sequentially.   

4) Number of Simultaneous Runs:  This option specifies the number of cores to use on a multiprocessor 

system.  It should be kept below the total number of cores, and can be further restricted if the computer 

is being used for other tasks.   

5) Status:  Indicates the status of the simulation:  Never Ran, Running, Aborted, or Finished. 

For this example we will run 6 simulations in parallel, using 3 cores. 

The “Edit Simulation” button will bring up a window which allows the user to change the system geometry, 

times, initial conditions, and reaction parameters.  In this case we will increase the total system time to 0.1 

seconds, and set dt_data=0.001 s and dt_image=0.01 s.   Furthermore, we decrease the system size in the x and 

y directions to 100 nm in each direction.  
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Finally, click “Run Simulation.”  A window will pop up indicating that the simulation engine is warming up.  A 

progress bar is then displayed for each simulation to indicate its progress.  (The tutorial system will probably 

take 10-20 minutes to run, depending on the processor speed and number of cores.  This is a good opportunity 

to get up and go for a walk.) 

 

Note that the simulation status may not automatically change after the simulation finishes.  This is a known bug 

that affects about half of all simulations.  Minimizing the simulation management frame and then re-expanding 

it will refresh the table and display the correct status. 

Note:  There is currently no option to pause a simulation and restart it at a later time.  This is a desirable feature 

and we plan to include this at a later time.  

The 3D Viewer 

Click “View 3D Snapshots” after all simulations are finished to open the interactive viewer.  The images for 

Run 0 are automatically loaded.   



32 
 

 

The viewer supports the full range of 3D interaction:  click the left mouse button to rotate the scene, the right 

mouse button to translate the scene, and use the mouse wheel to zoom.  Use the slider at the bottom to select a 

time point to view, or press play to view scenes sequentially.  The animation speed can be controlled by 

changing the frames per second (FPS).  A dropdown menu above the view panel allows the user from the 

different runs of the current simulation.   

The file menu provides options for saving the current view in one of the popular image formats (PNG, JPEG, 

and GIF), as well as options of creating a video file from the current view point in either Quicktime or AVI 

formats.  

The options menu allows the user to show or hide the time stamps, axes, and membrane, and provides options to 

configure the display of the latter two.  The “Load Scenes to Buffer” option will construct all the 3D scenes and 

store them in memory instead of rendering them in real time.  This will reduce the blinking which sometimes 

appears when rendering larger scenes, but it can require a large amount of memory which may not be available 

on all machines.  Note that this option does not affect the quality of exported videos.  

Data Tables 

Return to the simulation management frame and click the “View Data” button, which loads the data table frame.   
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At the top are two drop down menus.  The left drop down menu selects between different data types, most of 

which correspond to the data constructs discussed above:  molecule counts, bond data, state data, site data, 

cluster data, and running times.  The right drop down box selects between different data displays:  

1) Average:  Shows the average value and standard deviation as a function of time for the quantity selected 

in the list on the left-hand side.  The average and standard deviation are calculated over the independent 

simulation runs.  The image above shows the time course of free (unbound) ligand over the six runs. 

 

2) Histogram:  Provides values which can be used to construct a histogram with bins representing particle 

number and the counts representing number of run with that particle number, at each time point.  For 

example, the image below gives values for a histogram of the free ligand count at each time point.  At 

time 0 all 6 simulations have 20 free ligands, as expected because that was our initial condition.  At 1 

ms, 2 simulations have 17 free ligands, 2 have 18 free ligands, 1 has 19, and 1 still has 20 free ligands.  
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The dropdown box at the top selects whether the bins are displayed as the columns or the rows.  The 

table to the right allows the user to customize the bin size and range used in the histogram. 

 

3) Raw data:  Provides the values for each run individually, as shown below.  
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The three options just described apply for molecule, bond, and state data.  Site data is restricted to averages and 

standard deviations, but data is provided on the state and bond condition for each site in each molecule.  
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The running times panel shows the running time for each independent simulation, as well as the average and 

standard deviation.  Options are provided to display the times in seconds, minutes, hours, or days.  This data is 

especially useful for short, preliminary runs which are used to estimate the time required for longer simulations.  
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Notes about Directory Structure and Output Files 

Here we describe the directory structure and output files created while running simulations.  Imagine we saved 

the tutorial system in a folder called “springsalad”, and recall the system is saved as a plain text file, 

springsalad/TutorialExample.txt.  The first time the simulation manager is opened a folder is created in the same 

directory, springsalad/TutorialExample_SIMULATIONS , which will hold all simulation data and results. (For 

brevity we will henceforth refer to this as simFolder.)  When we make a simulation, say, Sim0, the program 

generates a plain text file in the simulations folder with the same name but appended with “_SIM”.  Thus, in 

this example we would find the file simFolder/Sim0_SIM.txt.  This file contains all of the information required 

to run the simulation and stores the location of the simulation results when they are generated.  When we run a 

simulation a new directory is created in the simulation folder, which will be named after the simulation with the 

word “_FOLDER” appended.  In this case that folder is called Sim0_SIM_FOLDER.  Inside this folder are four 

additional folders named data, images, videos, and viewer_files.  The images and videos folder are created for 

convenience but are not used by the program.  Inside the data folder are additional folders called “Run0”, 

“Run1”, …, each of which holds various data for an individual run of the simulation.  In the data folder itself 

are a variety of files which store the various averages and histograms discussed in the previous section.  The 

number of these files varies depending on which statistics are captured during each run.  All are stored as csv 

files and all have descriptive names which should indicate the nature of the data held in the file.  Inside the 

viewer_files folder will be a group of plain text files named “Sim0_SIM_VIEW_Run0.txt”, 

“Sim0_SIM_VIEW_Run1.txt”,…,  each of which holds the information required by the 3D viewer for each run. 

To summarize, the after running a simulation the following directory structure will be created: 
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/model_name.txt 

/model_name_SIMULATIONS 

 sim_name_SIM.txt 

 /sim_name_SIM_FOLDER 

  /data 

   Various data files for averages and histograms. 

   /Run0 

Various data files for run 0 

   /Run1 

    Various data files for run 1 

   … 

  /viewer_files 

   sim_name_SIM_VIEW_Run0.txt 

   sim_name_SIM_VIEW_Run1.txt 

   … 

  /images 

  /videos 

Running SpringSaLaD on the Command Line 

The user may find the resources of a personal computer too limiting if they want to run tens or hundreds of 

independent simulations (for example, to generate highly accurate average values of the observables), and in 

this case it may be more convenient to run the simulations on a Linux cluster.  Here we provide instructions to 

run simulations on the command line and then import the results to a PC such that they can be viewed with the 

SpringSaLaD GUI.  We will use FileZilla (https://filezilla-project.org/) to transfer files between the PC and the 

cluster, and Cygwin (https://www.cygwin.com/) as a Windows-compatible Linux terminal shell.  Both are 

freely available and relatively user friendly, although the user can use any terminal shell.  We will use the 

model developed above for this example.  

Step 1:  Use the GUI to create the simulation you want to run on the cluster.  Edit the simulation so that it has 

the correct parameters, and indicate the number of runs desired.  All changes are saved automatically.  Do not 

run the simulation.  Here we create a simulation called “ForCluster,” and change the parameters to match 

those of the simulation described above (total time 0.1 s, dt_data = 0.001 s, etc).  We will make 50 runs.  

 

Now close SpringSaLaD. 

https://filezilla-project.org/
https://www.cygwin.com/
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Step 2:  We must now upload to the cluster both the input file and the jar file containing the simulation code.  

The jar file only needs to be uploaded once. 

To begin, I suggest creating a folder in your home directory on the cluster called “springsalad”, and three 

subfolders, “jar”, “sims”, and “stdout.”  The first holds the jar file, the second holds the simulation files, and the 

third will hold stdout files created and used by the simulations.   

Return to the PC and navigate to the folder where SpringSaLaD was unzipped.  In addition to SpringSalad-

xxx.jar, you will see a second jar file, LangevinNoVis01.jar.  (If you are curious, the name refers to the fact that 

these files contain no visualization components.)  Upload this file to the jar subdirectory.  

 

Now navigate to the folder where you saved the model.  In addition to the model file, “TutorialExample.txt”, 

you will see a folder named “TutorialExample_SIMULATIONS.”  (In general the folder will be named 

ModelName_SIMULATIONS.)  Open this folder and you will see a file called “ForCluster_SIM.txt.”  This is 

the model input file.  Upload it to the “sims” folder on the cluster.  
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Step 3: We create two files on the cluster, a generic script to submit the jar file, and a second script with a for 

loop to launch many runs at once.  (A user familiar with the Linux environment and PBS job submission can 

use their own preferred scheme.  The method here seems easiest to me, but I am by no means a Linux expert.) 

Open Cygwin, ssh into the cluster, and navigate to the sims subfolder.  

 

Use your favorite text editor, such as vim, to create a file called “runSpringSalad.pbs” in the sims folder, with 

the following content. 
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The version number of Java 1.8 is probably different on your machine.  If your cluster does not use modules 

then you’ll need another way to ensure Java 1.8 is loaded instead of an older version of Java.   

Next, create a second file in the sims folder called “LaunchSpringSalad.sh”, with the following content. 

 

Notice that the array “a” appears twice, once commented out.  We will run this script twice.  The first time we 

run it with “a” set to the array with one element, namely 0.  This will launch the first run with index 0, and the 

program will recognize that this is the first run and will then create all relevant subdirectories.  We will then 

comment out the “a=(0)” line, and uncomment the other line defining “a”.  Notice that this line defines an array 

which goes from 1 to 49.  In general, this line should define an array which runs from 1 to (N-1) in increments 

of 1, where N is the total number of runs.  The script is now run a second time to launch the remainder of the 

runs.   

#!/bin/bash 

#PBS -l walltime=120:00:00 

#PBS -j oe 

module unload java 

module load java/1.8.0_45 

java -Xms64m -Xmx1024m -jar /YOUR_PATH/springsalad/jar/LangevinNoVis01.jar "${fileName}" "${number}" 

#!/bin/bash 

# a=$(seq 1 1 49) 

a=(0) 

for i in ${a[@]} 

do 

qsub -N "SOME_NAME_${i}" -o "/YOUR_PATH/springsalad/stdout/SOME_NAME_${i}.stdout" \ 

-v "fileName=/YOUR_PATH/springsalad/sims/ForCluster_SIM.txt,number=${i}" runSpringSalad.pbs 

done 
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Step 4:  Return to the command line and launch the first run by typing “bash LaunchSpringSalad.sh”. If all goes 

well you should see a line indicating that your job has been submitted to the PBS queue.  Wait about 30 

seconds, then check to see that the folder “ForCluster_SIM_FOLDER” has been created in the “sims” directory.   

 

Now, as described above, change the commenting in LaunchSpringSalad.sh to run the remainder of the clusters.  

Save the script and relaunch it by typing “bash LaunchSpringSalad.sh”.  You should see the remaining 49 runs 

submitted to the cluster. 

Step 5: Wait for the simulations to finish.  You can always use qstat to check the job status.  Each run also 

writes its percentage complete to the corresponding stdout file in the stdout folder.  As always, this is a great 

time to get away from the computer and go for a walk.   

Step 6:  Now download all of the data from the cluster to your local PC.  To do so, simply download the entire 

“ForCluster_SIM_FOLDER” to the “TutorialExample_SIMULATIONS” folder (which contains the 

“ForCluster_SIM.txt” file).  It may take a few minutes to download all of the files, depending on your 

connection speed.  
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Step 7:  We now need to edit the simulation input file to notify SpringSaLaD that this job was run on the 

cluster.  Open “ForCluster_SIM.txt” and scroll to the bottom, which should read as follows.  

*** SIMULATION STATE *** 

 

Runs: 50 

Parallel: false 

SimultaneousRuns: 1 

Aborted: false 

IsRunning: false 

HasResults: false 

RunOnCluster: false 

 

*** PROCESSOR FILES *** 

 

MoleculeAverages: 'null' 

BondAverages: 'null' 

StateAverages: 'null' 

RunningTimes: 'null' 

 

*** RAW DATA FILES *** 

 

'null' 

 

*** SITE DATA FILES *** 

 

null 
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Change the two flags “HasResults” and “RunOnCluster” to true, so that the file looks as follows.  

 

Step 8:  Open SpringSaLaD, load the TutorialExample model, and navigate to the simulation window.  The 

window may take a few seconds to open as SpringSaLaD computes the various observables and organizes the 

tables.  You should see the “ForCluster” simulation as having results.  At this point the visualization and data 

tables can be used as with any other simulation.   

 

*** SIMULATION STATE *** 

 

Runs: 50 

Parallel: false 

SimultaneousRuns: 1 

Aborted: false 

IsRunning: false 

HasResults: true 

RunOnCluster: true 

 

*** PROCESSOR FILES *** 

 

MoleculeAverages: 'null' 

BondAverages: 'null' 

StateAverages: 'null' 

RunningTimes: 'null' 

 

*** RAW DATA FILES *** 

 

'null' 

 

*** SITE DATA FILES *** 

 

null 


