

Virtual Cell is developed by the Centerfor Cell Analysis and Modeling at the University of Connecticut Health Center. It is funded as a BiomedicalTechnology Research Resource by the National Institute of General Medical Sciences (NIGMS)

VCell BioModel using the Moving Boundary Solver

Objective

Create a simple Biomodel of a fluorescence photobleaching (FRAP) experiment in a moving cell; learn how to specify kinematics in a VCell Biomodel and utilize the Moving Boundary solver.

Goals

- Create a Biomodel Physiology that recreates a fluoresence photobleaching experiment and a spatial deterministic application of the Physiology using a 2D geometry created from analytic expressions for a simple circle
- Specify kinematics (i.e. velocities) of structures and the molecules contained within the structures
- Define initial conditions that vary in x and y using Boolean expressions.
- Create a simulation using the VCell Moving Boundary solver, specifying time course and computational mesh.
- Run the simulation, view and export results.

Notes on the VCell Moving Boundary Solver

Moving Boundary Applications in VCell allow for PDE (spatial) simulations to occur within a geometry where the boundaries of compartments can change in shape and position within the overall computational space. There are some important things to keep in mind when you create this type of application.

- The current implementation of the moving boundary solver only works with 2D geometries. We hope in the future to enable problems with 3D geometries.
- Creating an application with a moving boundary solver follows the same steps used for fixed domains, except that a velocity is assigned to points on the cell membrane (and optionally for species residing with the volume) by defining Kinematics for surface and volume objects as part of the description of the Geometry.
- Species will have both diffusion terms (which can be 0) and velocity terms defined by the kinematics. Because displacement terms will be different in different compartments, species in different compartments will not necessarily move together. This tutorial provides an example of different types of kinematics for membranes and volumes.
- Currently, VCell tools for analyzing spatial results are not available for results of moving boundary simulations, so it is necessary to export your results to other image processing software to analyze the results of simulations.

Table of contents

- Opening VCell
- Using VCell Help
- Defining compartments
- Creating species
- Creating applications
- Creating a 2D geometry using algebraic expressions
- Editing computational domain size
- Mappinggeometryto compartments
- Specifying kinematic processes.
- Specifying initial conditions
- Creating a simulation
- Using the Moving Boundary Solver
- Viewing simulation results
- Export simulation results as an NRRD or HDF5 file
- Export simulation results as a Quicktime movie
- Modify the model to see how volume species react to membrane changes

Your first time opening VCell

> You need to register as a New User if you want to run simulations on the VCell compute resources, or use the VCell database to store models that can be shared with collaborators.

| Virtual Cell login |
| :--- | :--- |
| User Name ACowan |
| Fassword |
| New User Registration (free!)... |
| Use this link for details on how to |
| acknowledge Virtual Cell in your |
| publication and how to share your |
| published research through |
| the VCell database. |
| Login as Guest (no Registration)... |

Moving Boundary Solver tutorial

Your first time opening VCell Guest Login Option

Moving Boundary Solver tutorial

The VCell Interface

File Account Window Tools Help

Moving Boundary Solver tutorial

Moving Boundary Solver tutorial

To create a new VCell model, click "File" > "New" > "BioModel"

Moving Boundary Solver tutorial

Moving Boundary Solver tutorial

File Account Window Tools Help

To create the components to your model, start with creating a volumetric compartment by selecting the Structure Tool. This will automatically create your first compartment.
File Account Window Tools Help

Moving Boundary Solver tutorial

File Account W
BiolModel2

Your model requires 2 volumetric compartments separated by a membrane compartment.

Reaction Diagram
Reactions (0)
Dtructures (3)
Species (0)
(1) Molecules (0)

Observables (0)
Applications (0)
Parameters, Functions, Units, e Pathway

VCell DB BMDB Pathway Comm
MathModels Geometries BioModels
\pm Search

Biological Models

My BioModels (ACowan) (142)
Shared With Me (138)
\oplus
Tutorials (9)
\square Public BioModels (870)
† - 国 Published (184)

+ -1 Curated (58)
(1) Uncurated (628)

ㄴ) 0 O 1

If you need to rearrange compartments and membranes, or any other features, use the selection tool and drag them by their label.

Observables

$<$

Search

Object Properties Annotations Problems (0 Errors, 0 Warnings)
Select only one object (e.g. species, reaction, simulation) to view/edit properties.

Moving Boundary Solver tutorial
Use the selection tool to name compartments and membranes. The area will turn red upon selection. Double click the structure name you wish to change and enter the new name.
File Account Window Tools Help

File Account Window Tools Help

Moving Boundary Solver tutorial

File Account Window Tools Help

Moving Boundary Solver tutorial

File Account Window Tools Help

File Account Window Tools Help

Note that you cannot move species, reactions, or fluxes from one compartment to another. You must delete a species, flux, or reaction from one compartment and then create it in another compartment.

File Account Window Tools Help

Moving Boundary Solver tutorial

File Account Window Tools Help

Moving Boundary Solver tutorial

File Account Window Tools Help

Moving Boundary Solver tutorial

Select Circle from the drop-down menu for the Shape and enter 0,0 for the Center Point and 5 for the radius. This will create a circle $10 \mu \mathrm{~m}$ in diameter centered on $\mathrm{x}=0, \mathrm{y}=0$ in the domain.

Note: Use the up/down arrows to expand the view of the geometry to better visualize the subdomains

Moving Boundary Solver tutorial

File Account Window Tools Help

Moving Boundary Solver tutorial

Select "Edit Domain" to adjust the overall size of the computational domain. For this tutorial, the extent of the domain should be 20 um in x and y, and place the origin at -6 in X and -10 in y.

Moving Boundary Solver tutorial

File Account Window Tools Help

Moving Boundary Solver tutorial

File Account Window Tools Help

File Account Window Tools Help
Tutorial_FRAP_moving2
Physiology
\& Reaction Diagram
Reactions (0)

D Structures (3)
Species (1)
(x) vobj_EC0

Volume Object for $\mathrm{EC}[0]$
kentroid, vel, size
(1) Molecules (0)

Obse
Application

- $d / d t$ 首 FR

The software by default will create volume spatial processes in the order of volumes shown in the top spatial volume table. Continue to create new processes until you create a process for the volume object you want; in this case, the vobj_Cyt1 (cytosol). Select the process you do not want, and "Delete Selected"
n, size

When a new Spatial Process for a volume object is created，an error is created associated with the Spatial Object because it has not been enabled to have an Interior
Velocity．You must go back and select that Spatial Object．

```
*) Reaction Diagram
Reactions (0)
Structures (3)
Species (1)
D Molecules (0)
D Observables (0)
Applications（1）
过 \(d / d t\) 首 FRAP
站 Geometry
Specifications Protocols \(7_{2}^{2}\) Simulations
```

| VCell DB | BMDB | Pathway Comm |
| :--- | :--- | :--- | MathModels Geometries BioModels

Structure Mapping Geometry D，finition Kinematics

Spatial Process

－Search
Enable the Interior Velocity using the check box in the Object Properties Window

＋	
－1．Tutorial＿FRAP＿moving： （9）Access［Arundeep 21	
†7－1 Ti Tutorial＿FRAPbinding	
（f）－Tutorial＿Membrane Fra	
＋+ －－Tutorial＿MultiApp	
＋－Tutorial＿MultiApp＿for ${ }^{-}$	
†－－－${ }^{\text {a }}$ Tutorial＿MultiApp＿sims	
＋7－－Tutorial＿Pathway Comr	
＋－Tutorial＿PH－GFP	
	11 Itrnnhin 01

Object Properties Annotations	Problems（1 Errors， 0 Warning a（3）Database File Info			
	\square Volume Centroid \square Interior Velocity		\checkmark Volume Region Size	
Spatial Quantity Name	Description	Enabled	Units	
vobj＿Cyt1＿centroidX	Volume Centroid（x compon．．．	\square	$\mu \mathrm{m}$	\wedge
vobj＿Cyt1＿centroidY	Volume Centroid（y compon．．．	－	$\mu \mathrm{m}$	
vobi＿Cyt1＿velX	Interior Velocity（x compone．．．	\square	$\mu \mathrm{m}^{3}$	
vobj＿Cyt1＿velY	Interior Velocity（y compone．．．	－	$\mu \mathrm{m}^{3}$	
vobj＿Cyt1＿size	Volume Region Size	\square	$\mu \mathrm{m}^{3}$	\checkmark

Contents

On the Geometry tab > Structure Mapping tab, use the line tool to link the physiology to the geometry. You must select the line tool each time and drag your cursor from a structure to its corresponding subdomain.

Membrane boundary conditions are chosen alphabetically among the adjacent subdomains.

Structure	Subdomain	Size Ratio	X-	X+	Y -	Y+
EC	■EC	1 [1]	Flux	Flux	Flux	Flux
Cyt	\square Cyt	1 [1]	Flux	Flux	Flux	Flux
PM	- Cyt_EC_membrane	1[1]	from \square	from \square	from ${ }^{\text {- }}$	from \square

AT
Object Properties Annotations Problems (0 Errors, 0 Warnings)
Select only one object (e.g. species, reaction, simulation) to view/edit properties.

Contents

File Account Window Tools Help

Physiology	
F.	Reaction Diagram
Reactions (0)	
	Structures (3)
Species (1)	
Molecules (0)	
Applications (1)	

Select "Specifications" to define the initial distribution of dex. Type the Boolean expression shown either by replacing the text directly in the Initial Condition box, or type in the "Expression" box in the properties pane below.

```
    Parameters, Functions, Unil
    Pathway
```

$\stackrel{\rightharpoonup}{2}$
VCell DB BMDB Pathway Comm

Note: A Boolean expression evaluates as 1.0 when true and 0 when false. The expression defines the concentration of dex as $10 \mu \mathrm{M}$ when x is less than -2.5 OR greater than 2.5, OR when y is less than -2.5 OR when y is greater than 2.5); otherwise, the value is 0 .

Public BioModels (870)Published (184)(1 Curated (59)Uncurated (627)	Object Properties Annotations Problems (0 Errors, 0 Warnings)						
	Description	Parameter	Expression	Units			
	initial concentration for Dex	initConc	10.0. $((x<-2.6)\\|(x>2.5)\\|(y<-2.5) \\|(y>2.5))$	M			
	diffusion constant for Dex	diff	10.0	$\mathrm{mm}^{2} . \mathrm{s}^{-1}$			
	Boundary Condition X-for Dex	BC_ $\times \mathrm{m}$	<zero flux>	UM. $\mathrm{um} . \mathrm{s}^{-1}$			
	Boundary Condition $\mathrm{X}+$ for Dex	$B C \times$	<zero flux>	HM. $\mathrm{Hm} . \mathrm{s}^{-1}$			
\geqslant	$<$			>			

File Account Window Tools Help

Moving Boundary Solver tutorial

Contents

File Account Window Tools Help

2．Reaction Diagram
Reactions（0）
Structures（ $\mathbf{3}$ ）
Species（1）
Molecules（0）
Observables（ 0 ）
Applications（1）
－$d / d t \|^{1}$ FRAP
双 Geometry
Specifications Protocols ํํㄴimulations
Parameters，Functions，Unil Pathway
$>$
VCell DB BMDB Pathway Comm
MathModels Geometries BioModels
＋Search
\square
iological Models
由－
My BioModels（ACowan）（145）
T Shared With Me（139）
田 Tutorials（9）
Public BioModels（870）
\＃－－：Published（184）
＋-2 Curated（59）
（1）－Uncurated（627）

Edit：FRAP
The Edit Simulation Dialog has 3 tabs．The Parameters Tab is used to adjust parameters for each simulation，or to scan multiple parameters．
 Use the Default settings for this tutorial

Parameter Name	Default	New Value／Expression	Scan
AreaPerUnitArea＿PM	1.0		\square
Dex＿diffusionRate	10.0		\square
KMOLE	0.001660538783162726		\square
K＿millivolts＿per＿volt	1000.0		\square
Voltage＿PM	0.0		\square
VolumePerUnitVolume＿Cyt	1.0		\square
VolumePerUnitVolume＿EC	1.0		\square
F＿	96485.3321	\square	
F＿nmol＿	$9.64853321 \mathrm{E}-5$		\square
K＿GHK＿	$1.0 \mathrm{E}-9$	\square	
N＿pmol＿	6.02214179 E 11		\square
PI＿	3.141592653589793		\square
R＿	8314.46261815		\square
＿T＿	300.0		\square
sproc＿0．velocityX	4.0		\square
vproc＿1．velocityX	4.0		\square

\section*{| Object Properties |
| :--- |
| Annotation： |
| |
| Clor |
| Settings： |
| |
| Mesh： |}

\section*{| Parameters | Mesh Solver |
| :--- | :--- |}

Specify non－default parameter values or scan over a range of values：

Parameters v

Select the "Mesh" tab to edit the mesh resolution for the simulation in the X and Y planes. Select "OK" to accept any changes.

Note: Use the smaller mesh size values shown here for the tutorial, or the simulation will take a long time to run.

Note: The solver computes the appropriate time step at each point; the output option only chooses which points you choose to save. Selecting a particular interval will ensure the solver uses those specific times in the computation.

Contents

File Account Window Tools Help
$[-$ Physiology
-20 Reaction Diagram
(1) Reactions (0)

Structures (3)
Species (1)
D Molecules (0)
Observables (0)
Applications (1)

To view the status of the simulation, look under the "Running Status" column.

Moving Boundary Solver tutorial

Contents

Contents

Moving Boundary Solver tutorial

Contents

To export as HDF5 files:

Contents

國 HDF5 Settings
Select data type to export:
(1) Variable values

Particle data
Additional formatting:switch rows/columns
\square Export multiple simulations together
Select Simulations...
\square
CSV Time-Sim-Var Layout
\square Export parameter scans together
Select Param Scans...
Data set layout is xyzt

Export jobs		
Job ID	Format	
3068711622	CSV	

OK		Cancel
Complete		

Start Export .

File Location	Simulation
rg/export/3068711622.hdf5	SimID_217607372_0_

Moving Boundary Solver tutorial

Contents

To export as HDF5 files:


```
View Data Export Data Post Processing Stats Data Post Processing Image Data
[Specify data to be exported
```

Export Format: Nearly raw raster data (${ }^{*} . \mathrm{nrrd}$)

Click "Start Export" and an additional dialog box appears with NRRD specific options. Use the selections shown here, there press "OK"

HDF5 and NRRD files can be opened and analyzed in a variety of imaging processing software including FIJI/ImageJ.

 \section*{\section*{Moving Boundary Solver tutorial
 \section*{\section*{Moving Boundary Solver tutorial

 You can also export a Quicktime movie for presentations.

 You can also export a Quicktime movie for presentations.

 You can also exporta Quicktime movie for presenta}

 You can also exporta Quicktime movie for presenta}

Moving Boundary Solver tutorial

Let's create a second Application to change the parameters for both the kinematics and diffusion coefficient and see how that affects the spatial distribution of the fluorescent probe

Moving Boundary Solver tutorial

File Account Window Tools Help

Moving Boundary Solver tutorial

Moving Boundary Solver tutorial

Return to the Geometry > Kinematics tab

Moving Boundary Solver tutorial

Contents

Moving Boundary Solver tutorial

Moving Boundary Solver tutorial

Moving Boundary Solver tutorial

Contents

Use the Time slider to see what happens during the simulation.
View Data Export Data Post Processing Stats Data Post Processing Image Data

