To run VCell go to: vcell.org

VCell Tutorial

Building a Rule-Based Model

We will demonstrate how to create a rule-based model of EGFR receptor interaction with two adapter proteins Grb2 and Shc. A Receptor-monomer reversibly binds a ligand at the extracellular domain, triggering dimerization through transmembrane domains. The receptor kinase transphosphorylates two receptor phosphotyrosines that independently recruit two adapter proteins, Grb2 and Shc. Shc itself is subject to transhphosporylation, where the phosphorylated form has a lower affinity to a receptor phosphotyrosine.

In this tutorial you will learn how to:

- Create a rule-based Physiology with Molecules, Species, Rules and Observables.
- Simulate a model using Deterministic application that expands rules into a reaction network using the BioNetGen engine.
- Simulate a model using a Stochastic application that simulates the reaction network generated by BioNetGen.
- Simulate a model using Network-Free application that skips network generation and directly computes Observables using NFSim engine.

General familiarity with VCell software is recommended. Although this tutorial can be followed by a VCell novice, it is recommended that novice users first look through the VCell tutorials available at http://vcell.org/vcell software/user guide.html .

Model building can be matched to the BioModel RB_egfr_tutorial in the Tutorial folder in the VCell Database.

Table of contents

- Opening VCell
- Physiology: Molecules
- Saving a VCell BioModel
- Physiology: Observables
- Physiology: Species
- Physiology: Reaction Rules
- Model Unit System
- Physiology: Reaction kinetics
- Physiology: Reactions
- Physiology: Visualization
- Application: Deterministic Network Generation
- Application: Stochastic
- Application: Network-Free

Opening VCell for the First Time

You need to register as a new user if you want to run simulations on VCell, compute resources, or use the VCell database to view and store models that can be shared with collaborators.

TIP: If something goes wrong, press ESC on the keyboard.

File Server Window Tools Help

2. Select Rename, and change the name to "Site". Press Enter.

TIP: A Molecule name can always be changed by double clicking in Name field, editing, and pressing ENTER. It does not matter if the molecule is already used elsewhere - the change will be propagated everywhere in the model.

File Server Window Tools Help

BioModel1
Physiology
\& 2 Reaction Diagram
Reactions (0)
Structures (1)
Species (0)
Molecules (2)
Observables (2)
Applications (0)
Parameters, Functions and Units
Pathway

\section*{| VCell DB | BMDB | Pathway Comm | Sabio |
| :--- | :--- | :--- | :--- |}

BioModels MathModels Geometries

\pm Search
\square Biological Models
(1) My BioModels (2018nathans751) (16)

円- Shared BioModels (0)
©- Public BioModels (601)
©- Tutorials (8)
+-D Education (34)

TIP: Sites can always be moved right and left among the Molecule length and renamed, states can always be renamed. To delete a state, you must first eliminate all places where this site is used, e.g. in reaction rules that change the site.

File Server Window Tools Help

BioModel1 Physiology Reaction Diagram Reactions (0) Structures (1) Species (0) Molecules (2) Observables (2) Applications (0) Parameters, Functions and Units \pm Pathway
VCell DB BMDB Pathway Comm Sabio
BioModels MathModels Geometries \boxplus Search \square Biological Models $\oplus-$ My BioModels (2018nathans751) (16) \oplus Shared BioModels (0) \oplus Public BioModels (601) \oplus Tutorials (8) \oplus Education (34)

TIP: BioNetGen definition displays the test strings that encodes elements of a rule-based model in the BioNetGen language (BNGL). In BNGL, molecular states are listed after site name with ~ appended.

File Server Window Tools Help

BioModel1
Physiology
Reaction Diagram
Reactions (0)
Structures (1)
Species (0)
Molecules (4)
Observables (4)
Applications (0)
Parameters, Functions and Units
Pathway

TIP: Molecule colors are ordered and cannot be changed. Molecules can be added and/or deleted at any time, but reaction rules, species and observables that use these molecules must be deleted first. A warning will appear if deletion is not allowed.

File Server Window Tools Help

TIP: Save your model as often as you can, so you don't lose any changes!

TIP: Compartments can be volumetric (3D) and membranes (2D). They can be added any time, but all species defined before compartments are introduced will be located in volume and cannot be moved to membranes.

File Server Window Tools Help

TIP: Each Observable corresponds to a sum of species selected by species patterns. Specific species are identified the network is generated using reaction rules. An observable corresponding to the total amount of all species that include this molecule is automatically generated for every molecule.

File Server Window Tools Help

TIP: Every table has a column BioNetGen definition. It can be edited only once -the first time an object is specified. It is useful if you have separate BNGL code you want to paste, but do not want to import for some reason. If you paste in BNGL code, once you click enter it cannot be further edited unless you export back out as BNGL.

File Server Window Tools Help

TIP: A yellow warning sign or red error sign may appear temporarily if something is wrong. After the error/warning is corrected, the sign will disappear within a few seconds.

File Server Window Tools Help

\square Physiology 8. Reaction Diagram Reactions (0) Structures (1) Species (0) Molecules (4) Observables (6)

Applications (0)
Parameters, Functions and Units + Pathway

TIP: If you rename a Molecule, the Observable corresponding to its total will be renamed automatically as long as you do not change its name. For example, changing _tot to _total will decouple the Observable from the Molecule definition, and it will be no longer renamed automatically if you change the name of this molecule.

File Server Window Tools Help

Reaction Diagram
Reactions (0)
Structures (1)
Species (0)
Molecules (4)
D Observables (7)
Applications (0)
Parameters, Functions and Units - Pathway

```
|VCell DB 
```


To specify an Observable counting all phosphorylated sites " Y 1 ", right click on the white state shape and select the desired state " p ". Similarly, create an Observable counting phosphorylated sites "Y2".

TIP: Species corresponding to each Observable can be seen after network generation under Application > Simulations > Generated Math > Math Description Language.

File Server Window Tools Help

TIP: Species may consist of more than one molecule, but the molecules must be connected.

File Server Window Tools Help

TIP: Left click on the Problems tab will show the list of errors and warnings. Double left click on a problem will bring up the issue.

File Server Window Tools Help
BioModel1
Physiology
\& Reaction Diagram
Reactions (0)
Structures (1)
Dpecies (1)
Molecules (4)
Observables (9)

Applications (0)
Parameters, Functions and Units \ddagger Pathway

```
\VCell DB BMDB Pathway Comm Sabio 
BioModels MathModels Geometries
#Search
] Biological Models
#-D My BioModels (2018nathans751) (16)
#-1) Shared BioModels (0)
#-D Public BioModels (601)
#-Tutorials (8)
@-DEducation (34)
```


TIP: Left click on a Table column name (e.g. Name) will sort the table by this column.

File Server Window Tools Help
BioModel1
Physiology
Reactions (0)
Reaction Diagram
Species (5)
Solecules (4)
Observables (9)
Applications (0)
Parameters, Functions and Units
Pathway

VCell DB BMDB Pathway Comm Sabion | BioModels | MathModels | Geometries |
| :--- | :--- | :--- |

$-\boxplus$ Search
\square Biological Models
† My BioModels (2018nathans751) (16)
©- Shared BioModels (0)
©- Public BioModels (601)

+ Tutorials (8)
†- Education (34)

TIP: Reaction rules generate reactions by selecting species that serve as reactants and generating new species i.e. the products of these reactions. Thus, each reaction rule is defined with reactant patterns (that select species to be reactants) and products patterns (to define how reactant molecules are modified).

File Server Window Tools Help

BioModel1
Physiology

Applications (0)
Parameters, Functions and Units (+) Pathway

In the next few slides we will define a rule for the ligand binding to the receptor.

1. Click the New Rule button to generate a new rule.

2. Errors and warnings are generated immediately. They will disappear as the rule is being specified.

TIP: Always check errors and warnings until you understand the issue. If in trouble, use Help from the top menu. It is fully searchable. It can be printed from http://vcell.org/support

TIP: The search field can be used to filter all lists by an entered term, such as Molecule or site name.

File Server Window Tools Help

TIP: Molecules in reactant/product patterns can be rearranged by right click on the Molecule shape and choosing Move right/Move left actions.

BioModel1
Physiology
Qs Reaction Diagram
DReactions (1)
D Structures (1)
D Species (5)
D Molecules (4)
D observables (9)
Applications (0)
Parameters, Functions and Units

We define conditions under which reactions may happen. Here, EGF binds if no ligand is bound (ecd is unbound) and the receptor is not in a dimer (tmd is unbound).

To select features of reactants, right click on the site shape and select its state and/or binding status.

BioModels MathModels Geometries
$-\boxplus$ Search
Biological Models
\pm - Shared BioModels (0)
(-) Tutorials (10)
(1) Education (34)

All changes in Reactant patterns are propagated down to the same molecules in product patterns.

TIP: Note that some options for binding status are greyed out because they are impossible.

TIP: Sites in yellow without any symbols underneath are always unbound.

File Server Window Tools Help

With no boxes checked, the reaction is shown in black and white, with only the site specific bonds indicated in color.

Checking the Single Row Viewer box aligns the entire reaction in one row. You can not edit the reaction in this mode.

Checking the Show Molecule Color box adds an ordered color to the molecule to help with visual differentiation. The specific color can not be changed.

Checking the Show Differe... box highlights in orange the differences in bonds, sites, and states between the reactants and the products.

TIP: Any combination of viewing buttons can be used.

Checking the Show Non-trivial box highlights assigned sites and states in yellow.

Single Row Viewer
\square Show Molecule Color
\square Show Non-trivial
V Show Differe...

TIP: The numbers of specified Molecules, Species, Reactions and Observables are always displayed in the left panel.

File Server Window Tools Help

2. Note that the only allowable kinetic type is Mass

Action, where every reaction selected by a Reaction Rule has a rate law of forward rate times the product of reactant amounts minus the reverse rate times the product of product amounts.

TIP: The unit system must be changed before entering any numeric values. Otherwise, all values will be converted from the old units to a new unit system.

TIP: VCell has various kinetic types, but rule-based models in version 6.1 are limited to mass-action kinetic only.
File Server Window Tools Help
BioModel1
Physiology
Seaction Diagram
Reactions (1)
Structures (1)
Species (5)
Molecules (4)
Observables (9)

Applications (0)
Parameters, Functions and Units † Pathway

\section*{| VCell DB | BMDB | Pathway Comm | Sabio |
| :--- | :--- | :--- | :--- |} | BioModels | MathModels | Geometries |
| :--- | :--- | :--- | $- \pm$ Search

- Biological Models

H- My BioModels (2018nathans751) (16) + Shared BioModels (0)

+ Public BioModels (601)
© Tutorials (8)
Đ- Education (34)

Set values in proper units. Match all values to the RB_egfr_tutorial model in the VCell 6.1 (Rule-based) folder. Values are also listed in a table on the next slide.

TIP: If reactants or products contain identical molecules, they are automatically numbered for the modeler's convenience, so the user can match reactants to products.
File Server Window Tools Help

TIP: A site with a vertical line underneath means that the site is bound, but the binding partner is not explicitly specified and can be any molecule allowable by rules.

File Server Window Tools Help

TIP: Using the Duplicate button can save a lot of time when a combination of multiple molecules participates in multiple reaction rules. Make sure you edit the copied rule and not the original one!

Reaction rules (phosphorylation and dephosphorylation) where the product and reactant have identical molecular structures.

Molecular structures with 2 spheres instead of one are bimolecular. In this case it is an EGFR dimer.

By clicking on any molecular node in the reaction diagram, one can see all reaction rules in which this molelcular pattern is used.

This is the full reaction diagram.

TIP. One can use VCell reaction tools to create non-rule based reactions among species (see other tutorials on VCell use).

TIP: Enter a string (e.g. Molecule or Site name) in the Search field, and the table will be filtered to display only entries containing this string. You can enter any BNGL string as well.

Rule-Based Tutorial VCell 6.1: Review of Rules

Ligand_Bind (receptor must be in monomeric form (tmd is unbound) and not bound to ligand (ecd is unbound) for reaction to happen.)

R_Grb2_interaction (EFGR does not have to be in monomeric form. Y1 has to be phosphorylated, for it to bind to sh2).

R_ShcU_interaction (Receptor is not necessarily in monomeric form. Y on She must be unphosphorylated. Phosphorylated Y 2 binds with sh3).

Contents

Dimeriz (tmd must be unbound and ecd has to be bonded externally for the two tmd sites to bond and form a dimer).

R_ShcP_interaction (for this reaction to occur, the Y site on Shc has to be unbound and phosphorylated. The unphosphorylated Y 2 binds with sh3).

Reaction	Reversible?	Kf	Kr
ligand_bind	Yes	$0.0031 /(\mathrm{nM} \mathrm{s}$)	$0.061 / \mathrm{s}$
Dimeriz	Yes	$0.0011 /(\mathrm{nM} \mathrm{s})$	0.1 1/s
R_Grb2_interaction	Yes	$0.0011 /(\mathrm{nM} \mathrm{s})$	$0.051 / \mathrm{s}$
R_ShcP_interaction	Yes	4.5E-04 1/(nM s)	0.3 1/s
R_ShcU_interaction	Yes	$0.0451 /(\mathrm{nM} \mathrm{s})$	$0.61 / \mathrm{s}$

->

Y1_Phosph (for phosphorylation to occur, tmd must be externally bound, implying a dimeric form).

Y2_Phosph (for phosphorylation to occur, tmd must be externally bound, implying a dimeric form).

Sch_Phosph (The Y site on Shc changes from unphosphorylated to phosphorylated. In order for this to unphosphorylated to phosphorylated. In order for this to
happen, sh3 must be bound to the phosphorylated Y site).

Y1_Dephosph (the Y1 site changes states from phosphorylated to unphosphorylated).

Y2_Dephosph (the Y1 site changes states from phosphorylated to unphosphorylated).

Reaction	Reversible?	Kf	Kr
Y1_phosph	No	$0.51 / \mathrm{s}$	0.0
Y1_dephosph	No	$4.51 / \mathrm{s}$	0.0
Y2_phosph	No	$0.51 / \mathrm{s}$	0.0
Y2_dephosph	No	$4.51 / \mathrm{s}$	0.0
Shc_phosph	No	$3.01 / \mathrm{s}$	0.0
ShcDephosp	No	$0.0051 / \mathrm{s}$	0.0

TIP: Check other VCell tutorials at http://vcell.org to learn about the use of Applications in VCell.

File Server Window Tools Help

TIP: Clamped means that the value of species is kept constant during the simulation.

File Server Window Tools Help

TIP: Enabling/disabling reactions is very useful for model validation: see how the network size is changing when upstream or downstream reaction rules are disabled.

File Server Window Tools Help

TIP: Setting Max. Molecules/Species may be biologically relevant if, for example, it is known from experiments that complexes may have no more than a certain number of molecules.
File Server Window Tools Help

TIP: Network generation may take a long time, so the default values are set very low. Most likely, they are too low for the network to be generated fully, and you will need to increase them.

File Server Window Tools Help

1. Check generation progress. The last iteration shown here still generates new species, so the network may be not fully generated.

Please go to the Specifications / Network panel and adjust the number of Iterations.

TIP: If network generation takes too long, it can be cancelled. VCell has a hard limit on the maximum number of species and reactions. If a generated network size exceeds this limit, constraints will not be applied, and the model should be adjusted to become smaller, or a Network-Free application used instead.

BioModel1 Physiology \% Reaction Diagram Reactions (11) Structures (1) Species (5) Molecules (4) Observables (9) Applications (1) $d / d t$ Applicationo - x Geometry - Specifications Protocols 尔 Simulations Parameter Estimation Parameters, Functions and Units
VYell VB BMDB Pathway Comm Sabio

TIP: All actions on this page are optional but highly recommended to verify that the generated network contains all expected, and does not contain unexpected, species and reactions. Creating a new BioModel may take a long time and is not recommended for large networks.

File Server Window Tools Help

\square BioModel1
\square Physiology
\% Reaction Diagram
Reactions (11)
Structures (1)
Species (5)
Molecules (4)
© observables (9)
Applications (1)
$\square \cdot d / d t$ Application 0
- x Geometry
- Specifications
4 Protocols
~2 Simulations
\measuredangle Parameter Estimation
Parameters, Functions and Units
\pm Pathway

```
|y%
BioModels MathModels Geometries
#Search
] Biological Models
#-] My BioModels (2018nathans751) (16)
#- Shared BioModels (0)
#-D Public BioModels (601)
#-DTutorials (8)
#-DEducation (34)
```


TIP: Filtering is very useful to verify the model. If you see that names of Molecules and Sites are too generic for efficient filtering - go back and change them. This is an easy and safe procedure, but you will need to rerun network generation. After the network is verified, it can be simulated.

TIP: Most models can be efficiently simulated locally (blue button). But if you want to save simulation results in the database for quick retrieval later on, the server simulation (green button) is recommended.

File Server Window Tools Help

TIP: A stochastic application is recommended when the number of particles is low, and a deterministic simulation (using concentrations) may miss noise and fluctuations. It uses the same network generated by BioNetGen.

File Server Window Tools Help

TIP1: If the model was defined in concentrations, concentrations are converted into particle numbers using the volumes specified under Geometry. The default size is 5000 um3 (average cell size), so the number of particles will be exceedingly large. You need to decrease Size to a small simulation volume.

TIP2: To keep concentrations fixed, check "Concentration" before switching to Geometry and changing its Size.

Switching back and forth between Geometry > Structure Mapping and Specifications > Species, make sure your simulation volume is sufficiently small, so that for given concentrations the number of particles is small enough for stochastic simulations.

TIP: A Network-Free application simulates timecourses for observables without network generation. If the network size is too large or infinite, it is the only way to compute observables. However, individual species are not visible. To check whether a specific species is populated, it can be added to the list of Observables.

TIP：The NFSim engine has a large number of fine－tuning options．Generally，default options should be sufficient to simulate most models．If necessary，click on Edit．Options are documented under ？and in the Help menu．
File Server Window Tools Help
Rule＿Based＿Egrf

- Physiology
- Reaction Diagram
- Reactions（11）
- Species（5）
- Molecules（4）
observables（9）

Applications（3）
田 \mathbf{d} / dt Applicationo
国 Copy of Application0
\square Copy of Copy of Application0 －x Geometry
－Specifications －Protocols务 Simulations

4．Select the Edit Simulation tool or

 advanced options like different solvers and outputs．

BioModels MathMode
－+ Search
\square Biological Models
T－My BioModels（円－Shared BioModels（0）
†－Public BioModels（601）
＋Tutorials（8）
－Education（34）

3．Click to run locally （on user＇s computer）．

5．Click to learn more．

TIP: Generally, deterministic, stochastic and NFSim simulation results should be similar (given noise and fluctuations). If NFSim results are very different from results from a network, it may mean that the network is truncated and not exhaustively generated.

See the difference between EGFR dimers counted as molecules and as species

Ctrl + left click to see several species at once.

Acknowledgements

The following students worked on this tutorial:
Tanya Miller (2015) - Pomperaug High School
Nathan Schaumburger (2017) - Hall High School, West Hartford
Their work was supported by the Department of Health Career Opportunity Programs; the Aetna Foundation, Connecticut Collegiate Awareness and Preparation Program, Office of Higher Education; Connecticut State Legislative Fund; The Hartford; William and Alice Mortensen Foundation; John and Valerie Rowe Health Professions Scholars Program; the University of Connecticut Foundation; the Friends of the Department of Health Career Opportunity Programs and UConn Health.

