Contents

To run VCell go to: vcell.org

VCell

VCell is funded by the NIGMS

Building a Rule-Based Model

We will demonstrate how to create a rule-based model of EGFR receptor interaction with two adapter proteins Grb2 and Shc. A Receptor-monomer reversibly binds a ligand at the extracellular domain, triggering dimerization through transmembrane domains. The receptor kinase transphosphorylates two receptor phosphotyrosines that independently recruit two adapter proteins, Grb2 and Shc. Shc itself is subject to transhphosporylation, where the phosphorylated form has a lower affinity to a receptor phosphotyrosine.

http://physrev.physiology.org/content/96/3/1025

In this tutorial you will learn how to:

- Create a rule-based **Physiology** with Molecules, Species, Rules and Observables.
- Simulate a model using **Deterministic application** that expands rules into a reaction network using the **BioNetGen** engine.
- Simulate a model using a **Stochastic application** that simulates the reaction network generated by **BioNetGen**.
- Simulate a model using **Network-Free** application that skips network generation and directly computes Observables using **NFSim** engine.

General familiarity with VCell software is recommended. Although this tutorial can be followed by a VCell novice, it is recommended that novice users first look through the VCell tutorials available at <u>http://vcell.org/vcell_software/user_guide.html</u>.

Model building can be matched to the BioModel *RB_egfr_tutorial* in the Tutorial folder in the VCell Database.

Table of contents

- Opening VCell
- Physiology: Molecules
- <u>Saving a VCell BioModel</u>
- <u>Physiology: Observables</u>
- Physiology: Species
- <u>Physiology: Reaction Rules</u>
- Model Unit System
- Physiology: Reaction kinetics
- Physiology: Reactions
- <u>Physiology: Visualization</u>
- <u>Application: Deterministic Network Generation</u>
- <u>Application: Stochastic</u>
- Application: Network-Free

Contents

Opening VCell for the First Time

^	👹 Virtual Cell login	1	
	User Name		
	Password		
	Login Cancel		
	Forgot Login Password	r	`
	New User Registration		ι
	Use <u>this link</u> for details on how to acknowledge Virtual Cell in your publication and how to share your published research through the VCell database.		

You need to register as a new user if you want to run simulations on VCell, compute resources, or use the VCell database to view and store models that can be shared with collaborators.

Rule-Based Tutorial VCell 6.1: Molecules

Rule-Based Tutorial VCell 6.1: Molecules

TIP: If something goes wrong, press ESC on the keyboard.

TIP: A Molecule name can always be changed by double clicking in Name field, editing, and pressing **ENTER**. It does not matter if the molecule is already used elsewhere – the change will be propagated everywhere in the model.

TIP: Sites can always be moved right and left among the Molecule length and renamed, states can always be renamed. To delete a state, you must first eliminate all places where this site is used, e.g. in reaction rules that change the site.

File Server Window Tools Help										
📄 BioModel1	🐕 Reaction Diagram 💿 Reactions 💿 Structures 💿	Species 💯 Mol	ecules 💿 Observables							
- Physiology - * Reaction Diagram	Name	Depiction	BioNetGen Definition							
- Reaction Diagram	EGF		EGF(Site)							
Structures (1)	EGFR		EGFR(ecd,tmd,Y1~u~p,Y2~u~p)							
- (1) Species (0) - (1) Molecules (2)		·								
- Ø Observables (2)										
Applications (0)										
← Parameters, Functions and Units										
			1. Right click on the site to call up a menu.							
VCell DB BMDB Pathway Comm Sabio BioModels MathModels Geometries			2. Select Rename , and change states "state1" and "state0", to "p" and "u" respectively. Press Enter to save. Do this for both sites "Y1" and "Y2".							
Biological Models	New Molecule Delete Pathway Links -		Search							
🗄 🛄 My BioModels (2018nathans751) (16)										
Shared BioModels (0)	Object Properties Problems (0 Errors, 0 Warnings)									
⊕ 🛄 Public BioModels (601) ⊕ 🛅 Tutorials (8)	Anchor Molecule									
Education (34)	No restrictions Only these:	N NO	ename elete							
	C0									
	Annotation									

TIP: BioNetGen definition displays the test strings that encodes elements of a rule-based model in the BioNetGen language (BNGL). In BNGL, molecular states are listed after site name with ~ appended.

Rule-Based Tutorial VCell 6.1: Molecules

TIP: Molecule colors are ordered and cannot be changed. Molecules can be added and/or deleted at any time, but reaction rules, species and observables that use these molecules must be deleted first. A warning will appear if deletion is not allowed.

TIP: Save your model as often as you can, so you don't lose any changes!

TIP: Compartments can be volumetric (3D) and membranes (2D). They can be added any time, but all species defined before compartments are introduced will be located in volume and cannot be moved to membranes.

Rule-Based Tutorial VCell 6.1: Observables

Contents

TIP: Each Observable corresponds to a sum of species selected by species patterns. Specific species are identified the network is generated using reaction rules. An observable corresponding to the total amount of all species that include this molecule is automatically generated for every molecule.

File Server <u>W</u> indow Tools Help									
📄 BioModel1	🐉 Reaction Diagram 💿	Reactions (🔊 Structures 💿	Spec	cies 💿 Molecules 🔇	🗊 Observables			
Physiology	Name	Struc	Icture Depiction		Deniction	BioNetGen Definition	Count		
	O0_EGF_tot					EGF()	Molecules		
© Reactions (0)	00_EGFR_tot	Cell				EGFR()	Molecules		
- Species (0)	O0_Grb2_tot Cell					Grb2()	Molecules		
Molecules (4)	00_Shc_tot	Cell				Shc()	Molecules		
Observables (4)		Cell		~~			molecules		
Applications (0)					1. Right clic	k on Observables tab. Ye	ou'll see a set		
Parameters, Functions and Units					-	les corresponding to th			
⊞-Pathway									
					of Molecule	s of each type.			
			2. This ob	ser	vable selects	species that have EGFR	molecules in		
	any state and any complex. Question marks and grey color								
	mean that the state and whether sites are bound or unbound								
VCell DB BMDB Pathway Comm Sabio	are not important for counting.								
BioModels MathModels Geometries			are not in	npo					
🕀 Search	New Observable	Duplicate	Delete	athwa	ay Links 🔽	Search			
Biological Models									
⊕ 🛄 My BioModels (2018nathans751) (16) ⊕ 🧰 Shared BioModels (0)	Object Properties Problems (0 Errors, 0 Warnings) 🔇 Database File Info								
🖶 🧰 Public BioModels (601)	Add Pattern								
🕀 🧰 Tutorials (8)	EGFR								
⊞- Clucation (34)	Multimolecular Cel	(ec		1	Y2				
	Polymer of	•		:	i				
	length = 2 Th	ne defau	It setting w	villo	count "Moleo	cules", meaning that a s	pecies is		
	length > 1 CO	ounted a	s many tim	nes a	as it has this	Molecule. This means th	hat dimers of		
	EGFR are counted twice, and tetramers (if any) are counted for								
Annotation									

Rule-Based Tutorial VCell 6.1: Observables

Contents

TIP: Every table has a column BioNetGen definition. It can be edited *only once* – the first time an object is specified. It is useful if you have separate BNGL code you want to paste, but do not want to import for some reason. If you paste in BNGL code, once you click enter it cannot be further edited unless you export back out as BNGL.

TIP: A yellow warning sign or red error sign may appear temporarily if something is wrong. After the error/warning is corrected, the sign will disappear within a few seconds.

Rule-Based Tutorial VCell 6.1: Observables

Contents

TIP: If you rename a Molecule, the Observable corresponding to its total will be renamed automatically as long as you do not change its name. For example, changing **_tot** to **_total** will decouple the Observable from the Molecule definition, and it will be no longer renamed automatically if you change the name of this molecule.

File Server Window Tools Help										
BioModel1	🧚 Reaction Diagram 🚿	Reactions 💿 Structures	🗇 Species 🕥 Molecules 🔇	🗊 Observables						
Physiology	Name	Structure	Depiction	BioNetGen Definition	Count					
		Cell		EGF()	Molecules					
Reactions (0)	O0_EGF_tot			W						
Structures (1) Species (0)	O0_EGFR_tot	Cell		EGFR()	Molecules					
Molecules (4)	O0_Grb2_tot	Cell	<i>∽</i>	Grb2()	Molecules					
Observables (7)	00_Shc_tot	Cell		Shc()	Molecules					
Applications (0)	Dimers	Cell		EGFR(tmd!+)	Molecules					
Parameters, Functions and Units	Dimers_s	Cell	C00000	EGFR(tmd!+)	Species					
🗄 Pathway	Y1	Cell	-00569		Molecules					
			To specify an (Observable counting all	phosphorylated					
				nt click on the white stat						
					•					
		select the desired state "p". Similarly, create an								
A V	Observable counting phosphorylated sites "Y2".									
VCell DB BMDB Pathway Comm Sabio										
BioModels MathModels Geometries										
Search Solution Biological Models	New Observable	Duplicate Delete	Pathway Links 🕶	Search						
H My BioModels (2018nathans751) (16)										
🕀 🧰 Shared BioModels (0)	Object Properties Proble	ems (0 Errors, 0 Warnings)	🙁 Database File Info							
Public BioModels (601)	Add Pattern									
⊕ 🛄 Tutorials (8) ⊕ 💼 Education (34)		EGFR ecd tmd	(?) (?) (?) (?) (?) (?) (?) (?) (?) (?)	t specified						
	Multimolecular Ce		71 72 State: u	r specifica						
	Polymer of		 State: p 							
	\bigcirc length = 2		State, p							
	Iength > 1									

Rule-Based Tutorial VCell 6.1: Observables

TIP: Species corresponding to each Observable can be seen after network generation under Application > Simulations > Generated Math > Math Description Language.

Rule-Based Tutorial VCell 6.1: Species

Contents

TIP: Species may consist of more than one molecule, but the molecules must be connected.

TIP: **Left click** on the Problems tab will show the list of errors and warnings. **Double left click** on a problem will bring up the issue.

Rule-Based Tutorial VCell 6.1: Species

TIP: Left click on a Table column name (e.g. Name) will sort the table by this column.

File Server <u>W</u> indow Tools Help										
BioModel1	🧚 Reaction Diagram 🕅 Read	ctions 🧔 Structures 💿	Species 💿 Molecules 💿	Observables						
Physiology	Name	Structure	Depiction	Link	BioNetGen Definition					
 Reaction Diagram Reactions (0) 	R	Cell		Link	EGFR(ecd,tmd,Y1~u,Y2~u)					
Structures (1)	L	Cell	S		EGF(Site)					
Species (5)	Grb2	Cell	<u>~</u>		Grb2(sh2)					
Molecules (4)	ShcP	Cell			Shc(sh3,Y~p)					
🗇 Observables (9)	ShcU	Cell			Shc(sh3,Y~u)					
Applications (0)	(add new here)									
Parameters, Functions and Units										
VCell DB BMDB Pathway Comm Sabio BioModels MathModels Geometries	Complete the specification of all Species. You may check the list in the <i>RB_egfr_tutorial</i> model in VCell 6.1 (Rule-based) folder.									
 Biological Models My BioModels (2018nathans751) (16) Shared BioModels (0) Public BioModels (601) Tutorials (8) Education (34) 		0 Errors, 0 Warnings)	Database File Info							

Rule-Based Tutorial VCell 6.1: Reaction Rule for bimolecular interaction: Editor

Contents

TIP: Reaction rules generate reactions by selecting species that serve as reactants and generating new species i.e. the products of these reactions. Thus, each reaction rule is defined with reactant patterns (that select species to be reactants) and products patterns (to define how reactant molecules are modified).

TIP: Always check errors and warnings until you understand the issue. If in trouble, use Help from the top menu. It is fully searchable. It can be printed from http://vcell.org/support

Rule-Based Tutorial VCell 6.1: Reaction Rule for bimolecular interaction: Editor

Contents

TIP: The search field can be used to filter all lists by an entered term, such as Molecule or site name.

TIP: Molecules in reactant/product patterns can be rearranged by **right click** on the Molecule shape and choosing **Move right/Move left** actions.

File Server Window Tools Help										
BioModel1		🐓 Reaction Diag	ram 💿 Re	actions 💿 s	tructures 💿 Species 💿 Mole	ecules 🗇 Ob	oservables			
🖻 Physiology 🚽 🧚 Reaction Diagram		Reaction	Name 🔺	Structure	Depiction	Kinetics	Link	BioNetGen Definition		
Reactions (1)		Reaction Rule	r0	Cell	COOSEP + COOSEP →	MassAction		<pre>@Cell:EGFR(ecd,tmd)+@Cell:EGF(Site) -> @C</pre>		
🗇 🗊 Structures (1)										
Species (5) Molecules (4)										
Observables (9)				_						
Applications (0)	We	define con	ditions	under						
Parameters, Functions and Units	wh	ich reactior	ns may	happen.	To select featu	ures of re	eactants	actants, right click on the site te and/or binding status.		
⊞ -Pathway	Hei	e, EGF bind	ls if no	ligand is						
		und (ecd is u		-	shape and set			of binding status.		
		receptor is								
				aumer						
	(tm	d is unbou	n a).							
VCell DB BMDB Pathway Comm Sabio	_									
		4			111		_			
BioModels MathModels Geometries							_			
Biological Models		New Reaction	New R	Rule Dupli	cate Delete Pathwa	ay Links 🔻		Search		
Bological Models (2018nathans751) (3)		Object Properties Problems (0 Errors, 0 Warnings) 💿 Database File Info								
Shared BioModels (0)	- 11			s (U Errors, U W	_					
⊕-	- 11	🔗 Kinetics 🚺	Zeditor							
Education (34)		Reversible	⊕ ⊖ (_				
				EGFR	() (md) (Y1) (Y2) +	EGF	->			
	- 11	Add Reacta	ant	Cell		Cell		e is unbound		
		Add Produ	ict	John 1				e has external bond		
					\wedge		? Site	e may be bound		
		Single Row V	/iewer	EGFR	D D EGF		Site	e bond specified		
		Show Molecu	le Color	Cell	d tmd (1) (2)	Site				
Charry Man Intrinsi										
All changes in								n Reactant patterns are propagated		
		Show Differe			dow	n to the s	same m	olecules in product patterns.		

TIP: Note that some options for binding status are greyed out because they are impossible.

Contents

TIP: Sites in yellow without any symbols underneath are always unbound.

Rule-Based Tutorial VCell 6.1: Visualization of Reaction Rules for bimolecular interaction

Rule-Based Tutorial VCell 6.1: Visualization of Reaction Rules for bimolecular interaction

Contents

Rule-Based Tutorial VCell 6.1: Reaction Rule for bimolecular interaction: Kinetics

Contents

TIP: The numbers of specified Molecules, Species, Reactions and Observables are always displayed in the left panel.

Rule-Based Tutorial VCell 6.1: Units

TIP: The unit system must be changed before entering any numeric values. Otherwise, all values will be converted from the old units to a new unit system.

Rule-Based Tutorial VCell 6.1: <u>Kinetics for bimolecular interaction rules</u>

Contents

TIP: VCell has various kinetic types, but rule-based models in version 6.1 are limited to mass-action kinetic only.

File Server Window Tools Help											
BioModel1	🛠 Reaction Diagram 🧔 Reactions 🧔 Structures 💭 Species 💭 Molecules 💭 Observables										
Physiology Physiology Physiology Physiology	Reaction	Name 🔺	Structure	Depicti	on	Kinetics	Link	BioN	letGen Definitio	on	
Reactions (1)	Reaction Rule	ligand_bind	Cell	COOCE9 + CO	<-> 00000	MassAction		@Cell:EGFR(ecd,tmd)+@Cell:EG	F(Site) <-> @	Cell:EGFR(ec	
Structures (1) Species (5)											
Molecules (4)											
🗇 Observables (9)											
Applications (0) Parameters, Functions and Units											
🗄 Pathway											
VCell DB BMDB Pathway Comm Sabio	•									P	
BioModels MathModels Geometries	New Reaction	New R	ule Dupl	icate Delet	e Pathw	ay Links 🔻		Search			
Search Siological Models	(0 Errors, 0 W	/arnings) 🛛 🛛 Da	tabase File Inf	o							
Home My BioModels (2018nathans751) (16)	Object Properties Problems (0 Errors, 0 Warnings) 💿 Database File Info										
🕀 🧰 Public BioModels (601)	Reaction Name ligand_bind										
⊕ 💼 Tutorials (8) ⊕ 🧰 Education (34)	Reversible ▼ Kinetic Type Mass Action (for each reaction: Kf·∏ reactants - Kr·∏ products) ▼ Convert units										
					II. KI'II reactant	s - KI - II produc					
	Name ruleRate rate		ription generated by	Global	Variable		E	xpression		Units nM.s ⁻¹	
		roscopic forw	• ·		0.003					s-1.nM-1	
		roscopic reve			0.06					S ⁻¹	
					<u> </u>						
				Set va	alues in p	proper u	nits. M	atch all values to th	e		
	- Annotation		ay Links 👘		-	-		ne VCell 6.1 (Rule-ba		der	
	Linked Pathway (Object(s):						ble on the next slide			
				value		Unsteu					

Contents

TIP: If reactants or products contain identical molecules, they are automatically numbered for the modeler's convenience, so the user can match reactants to products.

Contents

TIP: A site with a vertical line underneath means that the site is bound, but the binding partner is not explicitly specified and can be any molecule allowable by rules.

TIP: Using the **Duplicate** button can save a lot of time when a combination of multiple molecules participates in multiple reaction rules. Make sure you edit the copied rule and not the original one!

Rule-Based Tutorial VCell 6.1: Reaction Diagram

Contents

Rule-Based Tutorial VCell 6.1: Reaction Diagram

Contents

Rule-Based Tutorial VCell 6.1: Reaction Diagram

Contents

Contents

TIP. One can use VCell reaction tools to create non-rule based reactions among species (see other tutorials on VCell use).

TIP: Enter a string (e.g. Molecule or Site name) in the Search field, and the table will be filtered to display only entries containing this string. You can enter any BNGL string as well.

File Server <u>W</u> indow Tools Help							
BioModel1	🤣 Reaction Diag	ram 💿 Reaction	s 🔊 Structur	res 💿 Species 💿 Molecules 💿	Observables		
E- Physiology	Reaction	Name 🔻	Structure	Depiction	Kinetics	Link	
🗠 🤔 Reaction Diagram						LINK	
		R_Grb2_interaction					@Cell:EGFR(Y1~p)+@Cell:Grb2(sh2) <-> @C
Structures (1)	Reaction Rule		Cell		-		<pre>@Cell:EGFR(ecd,tmd)+@Cell:EGF(Site) <-> @</pre>
····· () Species (5)	Reaction Rule		Cell	COOSO -> COOSO	MassAction		@Cell:EGFR(tmd!+,Y2~u) -> @Cell:EGFR(tmd
💯 Molecules (4) 💯 Observables (9)	Reaction Rule		Cell	-> -> -> -> -> -> -> -> -> -> -> -> -> -	MassAction		@Cell:EGFR(Y2~p) -> @Cell:EGFR(Y2~u)
Applications (0)	Reaction Rule		Cell	COOG9 -> COOG9	MassAction		@Cell:EGFR(tmd!+,Y1~u) -> @Cell:EGFR(tmd
Parameters, Functions and Units	Reaction Rule		Cell		MassAction		@Cell:EGFR(tmd!+,Y1~p) -> @Cell:EGFR(tmd
Pathway	Reaction Rule	Sch_phosph	Cell		MassAction		@Cell:EGFR(Y2~p!1).Shc(sh3!1,Y~u) -> @Ce
	ShcP -> ShcU	Sch_Dephosph	Cell	<u>∞∞</u> -> ∞∞	MassAction		ShcP -> ShcU
	Reaction Rule	R_SchU_interaction	Cell	> > -> 			<pre>@Cell:EGFR(Y2~p)+@Cell:Shc(sh3,Y~u) <-></pre>
	Reaction Rule	R_SchP_interaction	Cell	COOSC + COS <-> COOSC	MassAction		<pre>@Cell:EGFR(Y2~p)+@Cell:Shc(sh3,Y~p) <-></pre>
	Reaction Rule	Dimerization	Cell	COOGED + COOGED <-> COOCED	MassAction		@Cell:EGFR(ecd!+,tmd)+@Cell:EGFR(ecd!+,
VCell DB BMDB Pathway Comm Sabio	•			III.			•
BioModels MathModels Geometries	New Reaction	New Rule	Duplicate	Delete Pathway Links 🔻	_	Search	
+ Search		INCON Rule	Dupicate	Paulway Links •		Search	
Biological Models	Object Properties	Problems (0 Errors	s, 0 Warnings)	🛞 Database File Info			
⊕			.,	O Database File 1110			
Public BioModels (601)	Show Warnin	ngsi					Refresh
Tutorials (10)	Des	scription 🔺		Url	Source		Defined In:
😥 💼 Education (34)							
		Compl	ete react	tion rule as in the fo	llowing t	wo slide	s, or in
		-		torial model in the	-		
						•	
		folder.	Pay atte	ention to reversibility	y of rules	s and kin	etic rates.

Rule-Based Tutorial VCell 6.1: Review of Rules

Ligand_Bind (receptor must be in monomeric form (tmd is unbound) and not bound to ligand (ecd is unbound) for reaction to happen.)

R_ShcU_interaction (Receptor is not necessarily in monomeric form. Y on Shc must be unphosphorylated. Phosphorylated Y2 binds with sh3).

Dimeriz (tmd must be unbound and ecd has to be bonded externally for the two tmd sites to bond and form a dimer).

R_ShcP_interaction (for this reaction to occur, the Y site on Shc has to be unbound and phosphorylated. The unphosphorylated Y2 binds with sh3).

Reaction	Reversible?	Kf	Kr
ligand_bind	Yes	0.003 1/(nM s)	0.06 1/s
Dimeriz	Yes	0.001 1/(nM s)	0.1 1/s
R_Grb2_interaction	Yes	0.001 1/(nM s)	0.05 1/s
R_ShcP_interaction	Yes	4.5E-04 1/(nM s)	0.3 1/s
R_ShcU_interaction	Yes	0.045 1/(nM s)	0. 6 1/s

Rule-Based Tutorial VCell 6.1: Review of Rules

Contents

Y1_Phosph (for phosphorylation to occur, tmd must be externally bound, implying a dimeric form).

Sch_Phosph (The Y site on Shc changes from unphosphorylated to phosphorylated. In order for this to happen, sh3 must be bound to the phosphorylated Y2 site).

Y1_Dephosph (the Y1 site changes states from phosphorylated to unphosphorylated).

Y2_Dephosph (the Y1 site changes states from phosphorylated to unphosphorylated).

Sch_Dephosph (this is a reaction, not a reaction rule, meaning that it is a reaction that takes place between species instead of molecular patterns).

Reaction	Reversible?	Kf	Kr
Y1_phosph	No	0.5 1/s	0.0
Y1_dephosph	No	4.5 1/s	0.0
Y2_phosph	No	0.5 1/s	0.0
Y2_dephosph	No	4.5 1/s	0.0
Shc_phosph	No	3.0 1/s	0.0
ShcDephosp	No	0.005 1/s	0.0

Rule-Based Tutorial VCell 6.1: Deterministic Application

Contents

TIP: Check other VCell tutorials at <u>http://vcell.org</u> to learn about the use of Applications in VCell.

Contents

TIP: Clamped means that the value of species is kept constant during the simulation.

TIP: Enabling/disabling reactions is very useful for model validation: see how the network size is changing when upstream or downstream reaction rules are disabled.

Contents

TIP: Setting Max. Molecules/Species may be biologically relevant if, for example, it is known from experiments that complexes may have no more than a certain number of molecules.

File Server Window Tools Help			
📄 BioModel1	🗶 🛪 Geometry 😻 Specifications 🗲 Protocols 🎜	Simulations 📐 Parameter Estimation	
- Physiology	Species Reaction Network		
- 🈕 Reaction Diagram	Species Reaction Network		
- @ Reactions (11)	Network Constraints		
- Structures (1)		-	
-∽∽ Species (5) -∽∽ Molecules (4)	Name	Туре	Value
Observables (9)	Max Iterations	value	3
- Applications (1)	Max Molecules / Species	value	10
= d _{dt} Application0			
- 🗯 Geometry			
- Specifications			
- 🗲 Protocols			
- A Simulations	Generated Network		
Parameter Estimation	Species: unavailable	View	Edit / Test Constraints
Parameters, Functions and Units	Species: unavailable 👹 Edit / Test Constrain	nts View	
⊕ Pathway	Reactions: unavaila	View	Create new VCell BioModel from Network
AT	Warning: none Max. Iterations	3	
VCell DB BMDB Pathway Comm Sabio	Max. Molecules / Species		
BioModels MathModels Geometries	Search		
T Search	Test / Run	Apply Cancel	
Biological Models	Object Properties Problems (0 Errors, 1 warnings	Ceneration Stat	us
🕀 🛄 My BioModels (2018nathans751) (16)			2. Left click
Shared BioModels (0)			
⊕ 🛄 Public BioModels (601) ⊕ 🛄 Tutorials (8)	1. Left click on	with the test values.	on Edit/Test
Education (34)		3. Set Max. Iterat	ions and Constraints.
	Network.		
		Max. Molecules/	Species. The
	4. Left clie	ck simulation will be	performed
	on Test/R		
		on your local con	
		speed will depend	<mark>1 on your </mark>
	1	CPU power.	
		cro power.	
	1		

Contents

TIP: Network generation may take a long time, so the default values are set very low. Most likely, they are too low for the network to be generated fully, and you will need to increase them.

File Server Window Tools Help									
BioModel1	🔀 Geometry 🛷 Spec	ifications 🔸 Protocols 📌	Simulations 🕼 Parameter Estimatio	on					
- Physiology									
- 🈕 Reaction Diagram	Species Reaction Ne								
- Reactions (11) - Structures (1)	Network Constraints								
- Structures (1) - Species (5)	Name Type Value								
- Molecules (4)	Max Iterations	lune	value	2	Volue				
Observables (9)	Max Molecules /	Snocios	value	10	0				
- Applications (1)	Max Molecules /	species	value	1					
☐ d/dt Application0									
Geometry									
—∰ Specifications — ≯ Protocols									
- Simulations	Generated Network	W Apply the new const	raints?						
→ Parameter Estimation									
Parameters, Functions and Units	Species: unavailable		=	View	Edit / Test Constraints				
⊕ -Pathway	Reactions: unavailat	Max. Iterations Max. Molecules / Species	3 11	View	Create new VCell BioModel from Network				
		Warning: Max Iterations nu							
VCell DB BMDB Pathway Comm Sabio	Warning: none	warning. Max tterations no	mber may be insufficient.						
	Apply Cancel								
BioModels MathModels Geometries	Search								
+ Search					-				
Biological Models	Object Properties Prot	olems (0 Errors, 1 Warnings)	Oatabase File Info Network Ge	neration Status	2. Unless the incomplete				
⊕ 🛄 My BioModels (2018nathans751) (16) ⊕ 🧰 Shared BioModels (0)					network is enough (e.g. if				
Public BioModels (601)	Running BioNetGen				it is truncated by the				
Tutorials (8)	Iteration 0:	5 species			-				
Education (34)	Iteration 1: Iteration 2:	6 species 7 species			maximum number of				
1. Check generation	Iteration 3	9 species			molecules per species),				
progress. The last	Creating BNS output				click Cancel and choose				
		utput to requester							
iteration shown here still	Total run time: 2.3 Warning: Max Itera	9 s. tions number may be insu	fficient.		larger values.				
generates new species, so			panel and adjust the number of	Iterations.					
the network may be not									
· · · ·									
fully generated.									

TIP: If network generation takes too long, it can be cancelled. VCell has a hard limit on the maximum number of species and reactions. If a generated network size exceeds this limit, constraints will not be applied, and the model should be adjusted to become smaller, or a **Network-Free** application used instead.

File Server Window Tools Help									
📄 BioModel1	🗙 Geometry 💜 Specifications 🥠 Protocols 🖋	Simulations 🛛 🖉 Parameter Estimation							
Physiology		_							
🗠 🎽 Reaction Diagram	Species Reaction Network								
- D Reactions (11)	Network Constraints								
Structures (1)									
Species (5)	Name Type Value								
Molecules (4)	Max Iterations	value	3						
© Observables (9)	Max Molecules / Species	value	11						
Application (1)									
Geometry									
Specifications									
Protocols									
- A ² Simulations	Generated Network								
🗠 Parameter Estimation	Species: unavailat	view	Edit / Test Constraints						
Parameters, Functions and Units	Species: unavailat W Apply the new constru-	aints?	Edit / Test Constraints						
⊞ -Pathway	Reactions: unavail	View	Create new VCell BioModel from Network						
	Max. Iterations	12							
VCell DB BMDB Pathway Comm Sabio	Warning: none Max. Iterations Max. Molecules / Species	12 12							
	Warning: none								
BioModels MathModels Geometries	Search	Apply Cancel							
🗄 Search			;						
Biological Models	Object Properties Problems (o errors, o warnings	network Generation Sta	atus						
⊕									
Shared BioModels (0) E Public BioModels (601)	Running BloNetGen								
Tutorials (8)	Iteration 0: 5 species								
Education (34)	Iteration 1: 6 species Iteration 2: 7 species		2. Click Apply to prepare						
	Iteration 3: 9 species	N							
	Iteration 4: 18 species		network for simulation.						
	Iteration 5: 35 species	L							
	Iteration 6: 60 species		8						
	Iteration 7: 87 species Iteration 8: 106 species	1. Check generation	progress. No warnings						
	Iteration 9: 106 species	-	ork is fully generated.						
	Creating BNG output spec		ork is fully generated.						
	Return BioNetGen output to requester								
	Total run time: 12.8 s.		-						
	U								

Rule-Based Tutorial VCell 6.1: Deterministic Application

TIP: All actions on this page are optional but highly recommended to verify that the generated network contains all expected, and does not contain unexpected, species and reactions. *Creating a new BioModel may take a long time and is not recommended for large networks*.

File Server Window Tools Help									
📄 BioModel1	🔀 Geometry 😻 Specifications 🥠 Protocols 🍂	Simulations 🕼 Parameter Estimation							
Physiology	Species Reaction Network								
Reaction Diagram	Species Reaction Network								
Reactions (11)	Network Constraints								
Structures (1)									
Species (5) Molecules (4)	Name	Туре							
Observables (9)	Max Iterations	value	12						
Applications (1)	Max Molecules / Species	value	12						
□ d/ _{dt} Application0									
K Geometry									
Protocols									
, A ² Simulations	Generated Network 1. Click to se	e all species							
Parameter Estimation	Species: 106 in a separate pop-up View Edit / Test Constraints								
Parameters, Functions and Units									
⊞ -Pathway	Reactions: 684 window.	View	Create new VCell BioModel from Network						
	Warning: none		· · · · · · · · · · · · · · · · · · ·						
VCell DB BMDB Pathway Comm Sabio	Warning. Hone								
BioModels MathModels Geometries	Search								
+ Search									
Biological Models	Object Properties Problems (0 Errors, 0 Warnings	s) 💿 Database File Info Network Generation St	atus						
🖶 🧰 My BioModels (2018nathans751) (16)									
🕀 🧰 Shared BioModels (0)	Iteration U: 5 species								
Public BioModels (601)	Iteration 1: 6 species	2. Click to see a							
⊕ ⊡ Tutorials (8) ⊕ ⊡ Education (34)	Iteration 2: 7 species	reactions in a							
	Iteration 3: 9 species Iteration 4: 18 species	separate pop-u	p 3. See a reaction						
	Iteration 5: 35 species	window.							
	Iteration 6: 60 species	network in a							
	Iteration 7: 87 species separate window								
	Iteration 8: 106 species								
	Iteration 9: 106 species Creating BNG output spec		(may take a long						
	Return BioNetGen output to requester		time).						
	Total run time: 12.8 s.								
	Updating the network constraints with the	test values.	-						
	1		•						

Rule-Based Tutorial VCell 6.1: Deterministic Application

TIP: Filtering is very useful to verify the model. If you see that names of Molecules and Sites are too generic for efficient filtering – go back and change them. This is an easy and safe procedure, but you will need to rerun network generation. After the network is verified, it can be simulated.

Index	Name	Structure	Depiction	Expression
1	R	Cell		EGFR(Y1~u,Y2~u,ecd,tmd)
2	L	Cell	$\overline{\mathbf{v}}$	EGF(Site)
3	Grb2	Cell	$\overline{\mathbf{Q}}$	Grb2(sh2)
4	ShcP	Cell	609	Shc(Y~p,sh3)
5	ShcU	Cell	609	Shc(Y~u,sh3)
6	s5	Cell		EGF(Site!1).EGFR(Y1~u,Y2~u,ecd!1,tmd)
7	s6	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~u,ecd!1,tmd!3).EGFR
8	s7	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!1,tmd!3).EGFR
9	s8	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~p,ecd!1,tmd!3).EGFR
10	s9	Cell	~~~~~~	EGF(Site!1).EGFR(Y1~p,Y2~u,ecd!1,tmd)
11	s10	Cell	~~~~~~	EGF(Site!1).EGFR(Y1~u,Y2~p,ecd!1,tmd)
12	s11	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!1,tmd!3).EGFR
13	s12	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~p,ecd!1,tmd!3).EGFR
14	s13	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~p,Y2~u,ecd!2,tmd!3).EGFR
15	s14	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~u,Y2~p,ecd!1,tmd!3).EGFR
	s15	Cell		EGF(Site!1).EGF(Site!2).EGFR(Y1~p!3,Y2~u,ecd!1,tmd!4).EG
17	c16	Cell		ECE(Site11) ECE(Site12) ECER(V1 xu V2xn13 ecd11 tmd14) EC
Search				

Close

Use these buttons to fit species and reaction rules on the screen.

c0

Different bonds are shown in different colors.

TIP: Most models can be efficiently simulated locally (blue button). But if you want to save simulation results in the database for quick retrieval later on, the server simulation (green button) is recommended.

Rule-Based Tutorial VCell 6.1: Deterministic Application: simulation results

Contents

TIP: A stochastic application is recommended when the number of particles is low, and a deterministic simulation (using concentrations) may miss noise and fluctuations. It uses the same network generated by BioNetGen.

File Server Window Too	ls Help				
Rule_Based_Egrf	i			\mathscr{L}^{2}_{t} Simulations 🗠 Parameter Estimation	
Species Reaction Reactions (11) Network					
Structures (1) Species (5)			Name	Туре	Value
 ✓ Molecules (4) ✓ Observables (9) → Applications (1) 		Max Iterations Max Molecules / Species		value value	12 12
Applications (1) Application Application Application Application Secificati Protocols Af Simulation Parameter Parameters, Functio Pathway VCell DB BMDB Pathwa BioModels MathModels Ge Search	Rename Delete Copy Copy As New BioMode Expand All Collapse All	el From App	Jetwork Deterministic Stochastic Network-Free	 One can create a stochastic a deterministic application. Right Application, select Copy As> Sto species will be copied to the ne <i>application</i> uses the BioNetGer network that is solved using dir Alternatively, a new application click on Applications, select New 	c click on Deterministic ochastic. Initial values of w application. A <i>Stochastic</i> n engine to generate a reaction rect or hybrid Gibson solvers.
 Biological Models My BioModels (2018na Shared BioModels (0) Public BioModels (601) Tutorials (8) Education (34) 		Object Propert		ings) 💿 Database File Info Network Generation St simulation) to view/edit properties.	atus

TIP1: If the model was defined in concentrations, concentrations are converted into particle numbers using the volumes specified under Geometry. The default size is 5000 um3 (average cell size), so the number of particles will be exceedingly large. You need to decrease Size to a small simulation volume.

TIP2: To keep concentrations fixed, check "Concentration" before switching to Geometry and changing its Size.

🐋 Geometry 🛛 🐲 Specifi	cations $ ightarrow$ Protocols \mathscr{A}_{l}^{2} Si				
Structure Mapping Geom	etry Definition				
		Switching back and forth			
				~	between Geometry >
<				>	Structure Mapping and
		Volume/Su			Specifications > Species,
	Structure		Siz	e	make sure your simulation
Cell			10 [µm³]		volume is sufficiently small,
					so that for given
K Geometry Specifi	cations 🗲 Protocols 📌 Si	imulations			concentrations the number
					of particles is small enough
Species Reaction Netwo				i	-
	Initial Condition: O Cor	ncentration Number of Nu	of Particles Randomize Initial Cond	dition	for stochastic simulations.
Species	Structure	Clamped	Initial Condition	Force Continuous	
R	Cell		602.0 [molecules]		
L	Cell		4094.0 [molecules]		
Grb2	Cell		349.0 [molecules]		
SchP SchU	Cell Cell		0.0 [molecules] 903.0 [molecules]		
Schu	Cell		905.0 [molecules]		

ч

Rule-Based Tutorial VCell 6.1: Stochastic Application: simulation results

1. Create a new simulation in the TIP1: Every species and observable is Check to see species stochastic application using the same presented in two units generated by BioNetGen. settings as the previous simulation. concentrations (to compare to deterministic results) and molecules Check to see Results for Simulation Simulation1 \times (displayed with **Count** appendix). Species specified X Axis: in Physiology. Plot Legend: 309.0 t TIP2: Select Other to view show reaction Dimers_Count [molecules] Y Axis: rates (as Kf ...) and reaction firing events Display Options: Dimers_s_Count [molecules] GeneratedSpecies (as P ...) per second for each individual Observables Y1 Count [molecules] reaction generated by each rule. Other Y2 Count [molecules] Reaction Specie 200.0 Note the difference between Dimers EGFR dimers counted as Dimers Count molecules and as species. Dimers_s Dimers s Count O0_Egf_tot O0_Egf_tot_Count O0 EGFR tot O0_EGFR_tot_Count O0_Grb2_tot 100.0 O0 Grb2 tot Count O0_Shc_tot O0 Shc tot Count Y1 Y1_Count The difference between "Y1" Y2 and "Y2" phosphorylation Y2_Count Y_total_Count timecourses is due to Shc phosphorylation. 0.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Ctrl + left click to p View see several species at once. Click to see numerical values.

Contents

TIP: A Network-Free application simulates timecourses for observables without network generation. If the network size is too large or infinite, it is the only way to compute observables. However, individual species are not visible. To check whether a specific species is populated, it can be added to the list of Observables.

TIP: The NFSim engine has a large number of fine-tuning options. Generally, default options should be sufficient to simulate most models. If necessary, click on Edit. Options are documented under ? and in the Help menu.

File Server Window Tools Help		
Rule_Based_Egrf	Fdit: Simulation1	
Physiology		
	1. Set end	
- Structures (1)	time.	🕨 🔳 📓 🚺 💽
Species (5)	Parameters Solver	Results
Molecules (4)	Choose solver algorithm and fine-tune time conditions:	no
© Observables (9)	Integrator NFSim (Network Free Simulator) ?	
-Applications (3)		
	General	3. Click to
🕀 🏫 Copy of Application0	Time Step	
🖃 🧒 Copy of Copy of Application0	Time/Bounds	run locally
- Ceometry	Starting 0.0 Minimum Ab 2. Click to	(on user's
Specifications Specifications Protocols	Default	computer).
2 ² Simulations	Ending 60.0	computer <i>j</i> .
-Parameters, Fund	Maximum server (to	
Pathway 4. Select the Edit	Store	
Simulation tool or		
VCell DB BMDB Path	© Keep Every time samples and at most Simulation	
BioModels MathMode advanced options like	results).	
🕀 Search different solvers and	Output Interval 0.05 s	1
Biological Models Outputs.	Output Times	
🖶 🛄 My BioModels (2		5. Click to
General BioModels (0) Annotation: Definition:	(Comma or space separated numbers, e.g. 0.5, 0.8, 1.2, 1.7)	4. U
Timend	Advanced Solver Options	learn more.
Education (34) Settings: 20	Compute observables at output times only.	
Parameters wit	Set the distance to molecules that might have to be updated: 2	
Paramete		Scan
	Set a seed to NFsim's random number generator.	
	OK Cancel	

Acknowledgements

The following students worked on this tutorial:

Tanya Miller (2015) – Pomperaug High School Nathan Schaumburger (2017) – Hall High School, West Hartford

Their work was supported by the Department of Health Career Opportunity Programs; the Aetna Foundation, Connecticut Collegiate Awareness and Preparation Program, Office of Higher Education; Connecticut State Legislative Fund; The Hartford; William and Alice Mortensen Foundation; John and Valerie Rowe Health Professions Scholars Program; the University of Connecticut Foundation; the Friends of the Department of Health Career Opportunity Programs and UConn Health.